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algorithm

Ben Bloem-Reddy

Reading: Chapter 9.13 EM Algorithm, [Was04]. Supplemental: Ch. 9.5, [EH21]. Comprehensive:
Ch. 9, [Bis06]. Advanced: Ch. 20.2, [Das11].

The censored data we encountered last class is a special type of missing data. Today we’ll study an
algorithm for handling missing data and other types of unobserved variables. The Expectation-Maximization
(EM) algorithm is widely used, but we should note that it is not the only approach to these types of problems.
We should also note that it works best when the expectation can be computed in closed form, which often
is not the case.

Suppose we have random variablesXn = (X1, . . . , Xn), which we will observe, and Zm = (Z1, . . . , Zm), which
we will not observe. Z could represent censored event times or other missing data, or it could represent a
collection of latent variables that are part of the model. Then the likelihood of xn is (assuming we have
a parametric model)

Ln(θ) = f(xn; θ) =

∫
f(xn, zm; θ) dzm = Eθ[f(X

n, Zm; θ)|Xn = xn] . (21.1)

We’ll consider the case of latent variables today, but the same basic ideas apply to other scenarios.

1. Gaussian mixture models

Suppose that each observation Xi is an iid sample from a mixture of Gaussians with K components, so
that with ϕ(x;µ,Σ) the PDF of the multivariate Gaussian distribution,

f(xi; θ) =

K∑
k=1

πkϕ(xi;µk,Σk) . (21.2)

Here, (πk)
K
k=1 are the mixture probabilities so that each πk ∈ (0, 1) and

∑
k πk = 1; µk and Σk are the

mean vector and covariance matrix, respectively, of the k-th mixture component.

This can be recast as a latent variable model, with each observation Xi having a corresponding unobserved
component assignment vector Zi = (Zi1, . . . , ZiK) sampled from the categorical distribution with category
probabilities (πk)

K
k=1. (That is, each Zik is either 0 or 1, and only one entry in the vector is equal to 1.)

Then

f(xi, zi; θ) =

K∑
k=1

zikϕ(xi;µk,Σk) =

K∏
k=1

ϕ(xi;µk,Σk)
zik , (21.3)

so that (21.2) is recovered when we take the expectation with respect to Zi, as in (21.1).

2. The EM algorithm

The EM algorithm can be used to estimate the entire set of parameters θ = ((πk)
K
k=1, (µk,Σk)

K
k=1). We’ll

keep things simple today and assume that Xi ∈ R, and that we know (πk)
K
k=1 and (σk)

K
k=1. A nice exposition

of the general case can be found in [Bis06].

Here’s the general (abstract) EM algorithm.
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Algorithm 21.1.

1. Set an initial value θ(0).

2. For j = 1, 2, . . . , until convergence:

(a) E-step: Calculate

J(θ|θ(j−1)) = Eθ(j−1)

[
ln

f(Xn, Zm; θ)

f(Xn, Zm; θ(j−1))

∣∣∣∣Xn = xn

]
. (21.4)

(b) M-step: Calculate

θ(j) = argmax
θ

J(θ|θ(j−1)) . (21.5)

What does this look like for the Gaussian mixture model? The joint log-likelihood is (neglecting the nor-
malization constants (2πσ2

k)
1/2 because we’re not estimating σk and those terms don’t affect the following

calculations),

ln f(xn, zn; θ) ∝
n∑

i=1

K∑
k=1

− zik
2σ2

k

(xi − µk)
2 . (21.6)

The E-step then requires that we find

Eθ[ln f(X
n, Zn; θ)|Xn = xn] = −

n∑
i=1

K∑
k=1

Eθ[zik|Xn = xn]
1

2σ2
k

(xi − µk)
2 . (21.7)

Activity 21.1. Use Bayes’ rule to show that

Eθ[zik|Xn = xn] = Eθ[zik|Xi = xi] =
πkϕ(xi;µk, σ

2
k)∑K

ℓ=1 πℓϕ(xi;µℓ, σ2
ℓ )

. (21.8)

For convenience, let’s denote γik(θ) = Eθ[zik|Xi = xi]. Then

J(θ|θ(j)) = −
n∑

i=1

K∑
k=1

1

2σ2
k

γik(θ
(j))

(
(xi − µk)

2 − (xi − µ
(j)
k )2

)
. (21.9)

Activity 21.2. Show that

µ
(j+1)
k =

∑n
i=1 xiγik(θ

(j))∑n
i=1 γik(θ

(j))
. (21.10)

That’s it (for this example).

3. Monotone ascent of EM

The EM algorithm has a nice property: at each step j, the (log-)likelihood is non-decreasing. To see this,
recall that the Kullback–Leibler (KL) divergence between two probability densities is

D(p || q) =
∫

p(x) ln
p(x)

q(x)
dx . (21.11)

This can also be applied to conditional probability densities.
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Activity 21.3. Show that if θ(j), θ(j+1) are iterates of the EM algorithm, then

ln
f(xn; θ(j+1))

f(xn; θ(j))
= J(θ(j+1)|θ(j)) +D(f(zm|xn; θ(j)) || f(zm|xn; θ(j+1))) . (21.12)

Hence, since θ(j+1) was chosen to maximize J(θ|θ(j)), it must be that J(θ(j+1)|θ(j)) ≥ J(θ(j)|θ(j)) = 0.
Moreover, the KL divergence is non-negative, so the log-likelihood ratio on the left-hand side of (21.12) must
be non-negative, which implies that the likelihood ratio is at least 1. Hence, the likelihood is non-decreasing.

If the log-likelihood is concave then this guarantees convergence to the global maximum. If it is not then
the best we can say is that the EM algorithm will converge to a stationary point (local maximum, local
minimum, or saddle point); which stationary point depends on the initial value θ(0).

4. Extensions of EM

The Gaussian mixture example was an especially nice setting: both the E-step and the M-step could be
computed in closed form. (This will generally be possible with mixtures of exponential family distributions
and other nice cases.) If the M-step can’t be computed in closed form then numerical optimization can be
used for each M-step. Given the effectiveness of numerical optimization, this is typically not a bad situation
to be in.

If the E-step cannot be computed in closed form then we have to resort to approximating the associated
integral. The need to estimate/approximate integrals is a never-ending source of statistics research problems.
The simplest approach is Monte Carlo EM, which (you guessed it) approximates the expectation with a
Monte Carlo average. However, this requires a lot of sampling (since the M-step requires the expectation as
a function of θ), at which point we might be inclined to try more sophisticated sampling methods like the
Gibbs sampler (which is structurally very similar to EM).
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