
STAT 460/560 Class 20: Time-to-event data and survival analysis

Ben Bloem-Reddy

Reading: Chapter 9, [EH21].

Up to now in this course, we have assumed that we observe everything necessary to perform inference. Today
we’ll encounter a new type of data, which often has some sort of missingness.

1. Time-to-event data

Suppose we have data T1, . . . , Tn taking values in R+, and representing the time between some “starting
event” (say, birth or the start of an experimental trial) and a pre-defined event of interest (death or the end
of the trial). Sometimes we’re lucky and all the event times are observed. Suppose for now that that is the
case.

Suppose the (unknown) CDF of the Ti’s is F , with PMF/PDF f . The survival function is

S(t) = P(T ≥ t) = 1− F (t) (20.1)

=

{∫∞
t

f(s) ds T continuous∑
ti≥t fti T discrete.

(20.2)

The hazard rate can be interpreted as the instantaneous rate of event occurrence, conditioned on the event
occurring at least at time t,

h(t) = f(t)/S(t) . (20.3)

The hazard rate can be used to obtain a predictive survival function,

S(t0, t1) = P(T > t1 | T ≥ t0) (20.4)

=

{
exp

(
−
∫ t1
t0

h(t) dt
)

T continuous∏
k:t0≤tk≥t1

(1− h(tk)) T discrete.
(20.5)

2. Censored data and Kaplan–Meier curves

Often, not all event times are observed—the trial may end, a subject may drop out of the trial, and so on.
These are examples of right censoring (sometimes just referred to as censoring): Tj > t∗j , where t∗ is the
time at which subject j is no longer observed, but Tj has not yet been observed. In such cases, data are
recorded as Zi = (Ti, Ci), where

Ci =

{
0 if event of interest is observed; and

1 if censored.
(20.6)

Consider the randomized clinical trial from the Northern California Oncology Group (NCOG) clinical trial,
as in Ch. 9.2 of [EH21]. Patients in Arm A of the trial were treated with chemotherapy; patients in Arm
B received chemotherapy and radiation. There is right-censoring in this data. If there weren’t, we could
estimate the survival function of each treatment arm as a functional of the empirical CDF:

ŜA(t) = 1− F̂A(t) . (20.7)

However, this is a biased estimate. Why? Let’s write down the likelihood of our observations.
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Activity 20.1. Assume that the event times are iid. Show that the likelihood is

Ln(z1, . . . , zn;F ) =

n∏
i=1

f(ti)
1−ci(1− F (ti))

ci (20.8)

=

n∏
i=1

h(ti)
1−ciS(ti) . (20.9)

To work with this for estimation, we can simplify a few things. First, sort the event times in increasing
order, so that t(1) ≤ t(2) ≤ · · · ≤ t(n). Second, denote by Rj the risk set at t(j), i.e., those patients who
have not exited or otherwise exited the study up to and including time t(j). That is, Rj = {i : ti ≥ t(j)}.
Let dj denote the number of exits at time t(j), so that dj/|Rj | is the proportion of the risk set that exits at
time t(j).

If we condition on the observed event times (whether censored or uncensored) and require our estimated
CDF to only put non-zero probability mass to the uncensored times, the likelihood is

Ln(z1, . . . , zn;F ) =
n∏

j=1

h(t(j))
1−c(j)

[
j∏

i=1

(1− h(t(i)))

]
(20.10)

=
∏

j:distinct t(j)

h(t(j))
dj (1− h(t(j)))

|Rj |−dj , (20.11)

and the MLE for the hazard rate is found to be

ĥ(t) =
dj
|Rj |

, t(j) ≤ t < t(j+1) . (20.12)

Plugging this into the survival function,

Ŝ(t) =

j∏
i=1

(1− ĥ(t(i))) =

j∏
i=1

(
1− dj

|Rj |

)
, t(j) ≤ t < t(j+1) . (20.13)

This is called the Kaplan–Meier (KM) estimator of the survival function.

For comparison, the KM estimator and the estimator obtained from the empirical CDF ignoring censoring
as in (20.7) are shown in Fig. 1.

Activity 20.2. Compare the KM estimator (20.13) with the estimator one would get by ignoring
censoring and just using the empirical CDF (as in (20.7)). Show that if there is no censoring then the
two estimators are equal.

Hint : Let d̄j =
∑j

i=1 di (with d̄0 = 0), and note that if there is no censoring then |Rj | = n− d̄j−1.

This holds more generally over any interval (t0, t1) on which there is no censoring. With this in mind, one
way to interpret the KM estimator is that it is the empirical CDF estimator of the survival function, except
that the underlying empirical population changes every time there is a censoring event.

3. Proportional hazards

The KM estimator is non-parametric; it assumes nothing about the underlying probability model beyond
basic iid assumptions and that F has discrete support (and the latter was just for convenience). Perhaps
we are willing to make stronger assumptions, or perhaps we have covariates that we would like to use in
our model. If the covariates aren’t discrete and relatively few, the covariate-wise KM estimators aren’t very
appealing.

The most widely used non-non-parametric model for time-to-event data is the (Cox) proportional hazards
model. It assumes that the i-th individual has the hazard rate

hi(t) = h0(t)e
xiβ . (20.14)
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Figure 1: Estimated survival functions. Left: KM estimator. Right: Empirical CDF-based estimator ignoring
censoring.

The “proportional” in the name comes from the fact that if we look at the hazard ratio of two individuals,
we see that it is constant (i.e., “proportional”)

hi(t)

hj(t)
= e(xi−xj)β . (20.15)

If we condition on the risk set Rj at each t(j), then the partial likelihood1 is (assuming no ties)

Ln(z1, . . . , zn;β) =

n∏
j=1

ex(j)β∑
i∈Rj

exiβ
. (20.16)

This can be optimized numerically (Newton–Raphson/Fisher scoring), and the usual asymptotic normality
arguments apply (with a caveat; see below) for finding approximate confidence intervals, etc.

Note that the baseline hazard function h0(t) doesn’t play a role in estimation. That’s because it’s shared
by all of the individuals, and it cancels out of the ratios in the likelihood function. Technically, that makes
this model semi-parametric: the parametric log-linear model for the individual hazard rates multiplied by
the arbitrarily complex (non-parametric) baseline hazard. In most instantiations of semi-parametric models,
both components need to be estimated (with the non-parametric nuisance the more challenging one to
estimate well); here, the math works out nicely so that we can essentially ignore the non-parametric part. If
we did have to estimate both parts then the asymptotics/approximate confidence intervals/statistical theory
get very complicated. See [van98], Ch. 25 for more.
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1Partial here because we’re not modeling the censoring process.

3


