
STAT 460/560 Class 17: The James–Stein estimator, shrinkage,

and ridge regression

Ben Bloem-Reddy

Reading: Chapter 7, [EH21]; Chapter 7.1, [Was06].

Today we’ll encounter a setting that departs from classical examples and is the starting point for many
statistical analyses of non-parametric methods.

1. The normal means model

Suppose we have random variables X1, . . . , Xn, independent and with

Xi ∼ N (θi, 1) . (17.1)

The goal is to estimate each θi. Let θ
n = (θ1, . . . , θn).

The natural place to start is the MLE, which in this case is θ̂i = Xi. Under squared error loss, the risk is

Eθn [∥θ̂n − θn∥2] =
n∑

i=1

Eθn [(Xi − θi)
2] = n . (17.2)

For pedagogical purposes, let’s also assume that

θi ∼iid N (0, σ2) . (17.3)

Clearly, the MLE would miss out on this correlation between the θi’s, so if we think such a correlation is
there then our estimation procedure ought to account for it. To that end, consider the posterior distribution

θi|Xi ∼ N (τXi, τ) , with τ =
σ2

1 + σ2
. (17.4)

Activity 17.1. What is the Bayes’ estimator, θ̂bi , in this case? Show that its risk is

E

[
n∑

i=1

(θ̂bi − θi)
2

]
= E

[
E

[
n∑

i=1

(θ̂bi − θi)
2 | θn

]]
= nτ , (17.5)

where the expectation is taken with respect to (Xn, θn) according to (17.1), (17.3).

2. The James–Stein estimator

The risk of θ̂b is smaller than the risk of θ̂ by a factor of τ . Since we don’t know τ but we need it for θ̂b, we
might estimate it by noticing that marginally,

Xi ∼iid N (0, 1 + σ2) , (17.6)
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and as long as n > 2, an unbiased estimate of τ is1

τ̂ = 1− n− 2

Sn
, with Sn =

n∑
i=1

X2
i . (17.7)

This gives rise to the James–Stein estimator,

θ̂JS = τ̂Xn , (17.8)

which has risk

E

[
n∑

i=1

(θ̂JSi − θi)

]
= nτ + 2(1− τ) , (17.9)

which is strictly less than n (the risk of the MLE) as long as n > 2.

It turns out that the correlation of the θi’s induced by (17.3) is not a necessary ingredient for this phenomenon;
it only makes the exposition easier.

Theorem 17.1 (James–Stein). Suppose that Xi ∼ N (θi, 1), i = 1, . . . , n, are independent. Then

E

[
n∑

i=1

(θ̂JSi − θi)

]
≤ 2 +

n
∑n

i=1 θ
2
i

n+
∑n

i=1 θ
2
i

, (17.10)

which is less than the risk of the MLE as long as
∑n

i=1 θ
2
i < n(n− 2)/2.

The proof of this requires some (interesting) techniques that we’ll look at next time.

The takeaway here is that when estimating many parameters, shrinking our estimates has the effect of
introducing bias but reducing the variance, so that the overall (average) performance improves. It turns
out that shrinking by τ̂ for the normal means problem is asymptotically optimal (in a minimax sense; see
[Was06], Ch. 7.6). There is a benefit to sharing “indirect evidence” (see [EH21], Ch. 7.4) about the underlying
distribution of θi’s. Note that a Bayesian approach does this automatically; frequentist shrinkage methods
are often described as biasing estimates towards zero, without the use of a prior. The approach we took
in introducing the JS estimator—putting a shared prior on the θi’s, and then using the data to estimate
the parameters of the prior distribution—is an example of an empirical Bayes approach, which blurs the
distinction between frequentist and Bayesian inference.

A potential downside of this is that the estimation of individual θi’s can suffer for any θi that is “extreme.”

Exercise 17.1. For n = 10, sample θi and xi according to (17.3), (17.1), with σ = 5. Set θ1 = 10 and
θ2 = −10. Now simulate 1000 datasets Xn of size n = 10, sampled with the θi’s fixed. Estimate the
risk Eθn [

∑n
i=1(θ̂i − θi)

2] for the MLE and the JS estimators, and plot i) θi versus the MSE of the MLE;
and ii) θi versus the MSE of the JS estimators. (You should get something like Fig. 1.)

3. Ridge regression

In addition to the normal means model (which can be thought of as a non-parametric version of one-way
ANOVA), shrinkage estimators arise in linear regression with many covariates. Suppose we have k covariates
and there is reason to believe that most of the coefficients are approximately zero. This can be encoded in
a couple of ways. First, we might put a prior on the regression coefficients, so that

βj ∼ N (0, λ−1/2) , (17.11)

with λ large. Modeling

Yi = Xiβ + ϵi , ϵi ∼ N (0, σ2) , (17.12)

1To see that this is unbiased, observe that Sn/(1 + σ2) ∼ χ2
n.
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Figure 1: Estimated risk per parameter. Blue is MLE; red is JS.

we know that the posterior is

f(β|y, x) ∝ exp

(
− 1

2σ2
∥y − xβ∥2 +−1

2
λ∥β∥2

)
. (17.13)

Without going through the algebra, we know that the posterior is a normal distribution, and we can find its
mean (corresponding to the Bayes estimator) by maximizing the RHS of (17.13) with respect to β. Doing
so yields

β̂(λ) =
(
X⊤X + λσ2I

)−1
X⊤Y =

((
X⊤X + λσ2I

)−1
X⊤X

)
β̂OLS . (17.14)

When we absorb σ2 into λ, this is called the ridge regression estimator.

A second way of deriving the estimator is to ask for the sum of squared residuals to be minimized, subject
to a penalty for the squared norm of the vector of coefficients,

β̂(λ) = argmin
β

∥Y −Xβ∥2 + 1

2
λ∥β∥2 . (17.15)

This has the same solution as before, but σ2 has been absorbed into λ. The parameter λ can be viewed as
quantifying how strongly the coefficients are being penalized.

How to choose λ? Typically, via cross-validation. The glmnet package has an efficient implementation of
ridge regression (and more).
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