
STAT 460/560 Class 16: Non-parametric regression: linear

smoothers and basis functions

Ben Bloem-Reddy

Reading: Ch. 21, [Was04], Ch. 5.4-5.5, [Was06].

We’ll dig a little deeper today into nonparametric regression.

1. Linear smoothers

At the end of the previous class, we introduced the Nadaraya–Watson kernel estimator (NWKE),

r̂(x) =

n∑
i=1

wi(x)Yi , with wi(x) =
Kh(x, xi)∑n
j=1 Kh(x, xj)

. (16.1)

The NWKE is an example of a linear smoother, which is defined as any estimator r̂n of r such that for
each x, there is a vector ℓ(x) = (ℓ1(x), . . . , ℓn(x))

⊤ with

r̂n(x) =

n∑
i=1

ℓi(x)Yi . (16.2)

The name comes from the fact that r̂n is a linear combination of the observed Yi’s. Note that observations
xi are not part of the definition, but typically they will be used to estimate ℓ.

Denote the vector of fitted values

rn = (r̂n(x1), . . . , r̂n(xn))
⊤ = LY , (16.3)

where L is a n× n matrix with Lij = ℓj(xi), i.e., the entries of L are the smoothing functions ℓj evaluated
at the xi’s. We can think of the ith row as the weights assigned to Yj to calculate r̂n(xi). L is called the
smoothing matrix, with effective degrees of freedom equal to νL = tr(L).

In the case of the NWKE,

ℓi(x) = wi(x) =
Kh(x, xi)∑n
j=1 Kh(x, xj)

=
K((x− xi)/h)∑n
j=1 K((x− xj)/h)

. (16.4)

As in the case of kernel density estimation, the bandwidth parameter can be selected by cross-validation
(CV). In regression, the leave-one-out CV score is defined as

R̂(h) =
1

n

n∑
i=1

(Yi − r̂(−i)(xi))
2 , (16.5)

where r̂(−i) denotes the estimated regression function when excluding observation (xi, Yi). In the case of
linear smoothers that satisfy

∑n
i=1 ℓi(x) = 1, it’s straightforward to see that

r̂(−i)(x) =

n∑
j=1

Yjℓj,(−i)(x) , with ℓj,(−i)(x) =

{
0 j = i

ℓj(x)∑
j′ ̸=i ℓj′ (x)

j ̸= i .
(16.6)

1



That is, we can just renormalize the weights. Using this, one can show that

R̂(h) =
1

n

n∑
i=1

(
Yi − r̂n(xi)

1− ℓi(xi)

)2

, (16.7)

which makes it easy to compute.

Activity 16.1. Show that for linear smoothers satisfying
∑n

i=1 ℓi(x) = 1, the leave-one-out CV can be
written as (16.7).

The NWKE is also an example of local regression, which gives higher weight ℓ(x) to points near x. See
Ch. 5.4 of [Was06] for more examples, including local polynomial regression, of which the NWKE is the
zeroth order version.

2. Regularization and splines

We will see later in the case of ridge regression that we can add a penalization/regularization term to our
loss function in order to bias our estimators to have certain properties. We can do something similar in
nonparametric regression; here, however, we have to regularize the functions themselves, rather than the
parameters. In particular, we might consider a roughness penalty (or complexity penalty) J(r), so that
we aim to minimize the penalized squared error loss

M(λ) =

n∑
i=1

(Yi − r̂n(xi))
2 + λJ(r) . (16.8)

A common penalty is

J(r) =

∫
(r′′(x))2 dx . (16.9)

In the limit λ → ∞, this will force the second derivative of r to be zero, and we get linear regression. In
the other extreme, λ → 0 essentially lets r̂ interpolate the data (assuming the function class we’re using is
flexible enough to do so).

A common approach to nonparametric (regularized) regression is to specify a set of basis functions,
B1(x), . . . , Bp(x), and model the regression function as

r(x) =

p∑
j=1

βjBj(x) . (16.10)

Conceptually and computationally, these behave a lot like linear regression models, except that instead of
working in a R-valued vector space, formally we’re working in a function-valued vector space. We won’t
worry about that here because practically speaking, things don’t end up looking very different.

A popular set of functions for nonparametric regression (popularity justified below) is cubic splines. A spline
basis is defined on a set of knots, which are points in an interval [a, b] with a ≤ ξ1 < ξ2 < · · · ξk ≤ b. A cubic
spline is a function r that is cubic polynomial over each interval (ξj , ξj+1), and such that r has continuous
first and second derivatives at each of the knots. (This can be generalized to Mth order polynomials.) A
natural spline is linear beyond the boundary points a, b.

It turns out that the function r̂n(x) that minimizes M(λ) in (16.8) with (16.9) is a natural cubic spline with
knots at the data points. This is called a smoothing spline.

We just need to construct a basis for them. There are many ways to do so; a computationally efficient basis
is the B-spline basis. Their definition is somewhat complicated (see Ch. 5.5, [Was06]) but they are simple
functions. See Fig. 1. These are smooth bumps that have compact support; which means that Bj(x)Bj′(x)
is non-zero only on a subset (often small) of (a, b). In practice, this allows the computation required to fit
the model to take advantage of sparse/structured matrix computation.
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Figure 1: B-spline basis functions on [0, 1] with (clockwise from upper left) p ∈ {3, 6, 9, 12} equally spaced
knots.
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With this basis, we can write

r̂n(x) =

p∑
j=1

β̂jBj(x) , (16.11)

with p = n+ 4, and find β̂ by minimizing

β̂ = argmin
β

(Y −Bβ)⊤(Y −Bβ) + λβ⊤Ωβ . (16.12)

Here, Bij = Bj(xi) and Ωjk =
∫
B′′

i (x)B
′′
j (x) dx.

Activity 16.2. Show that

β̂ = (B⊤B + λΩ)−1B⊤Y . (16.13)

Does this look familiar?

This is a linear smoother. What is the smoothing matrix L that satisfies (r̂n(x1), . . . , r̂n(xn))
⊤ = LY ?
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