
STAT 460/560 Class 15: Non-parametric curve estimation

Ben Bloem-Reddy

Reading: Ch. 20, [Was04]. (I’m also referring to [Was06] for more detailed exposition of certain results;
the corresponding sections there are easy to find.)

We’ll study nonparametric curve estimation today. Although it can be used for many things, we’ll encounter
it in the two most widely used settings. The basic idea is that there is an unknown function f(x) that we
want to estimate from data. In density estimation, f is the PDF of F , the unknown distribution of our data.
In regression, f is the conditional expectation E(Y |X = x), to be estimated from (X,Y ) pairs.

We’ll estimate f with f̂ , and it’s important to keep in mind that in general, f̂ is a function of the same type
as f , and it is a function of our data; hence it is random. We’ll often use the subscript n, as in f̂n, to remind
us that it depends on a random sample of size n.

We’ll measure performance with the integrated squared error (ISE) loss, defined as

L(f, f̂) =

∫
(f(u)− f̂(u))2du , (15.1)

with corresponding risk,

R(f, f̂) = E[L(f, f̂)] , (15.2)

where the expectation is taken with respect to the data used for estimation. As long we can interchange
integrals, so that R(f, f̂) =

∫
Ru du, with Ru := E[(f(u)− f̂(u))2] for each u,

R(f, f̂) =

∫
Rudu =

∫
b2(u)du+

∫
v(u)du , (15.3)

where b(u) = E[f̂(u)] − f(u) is the bias function, and v(u) = E[(f̂(u) − E[f̂(u)])2] is the variance function.
So the bias-variance trade-off we’ve previously encountered is alive and well in this setting. We’ll see that in
nonparametric curve estimation, the trade-off is controlled primarily by the smoothness of the functions we
use to estimate the curve: too much smoothing results in high bias and low variance; not enough smoothing
results in low bias and high variance. As such, most of this class is about how to find the right balance.

1. Kernel density estimation

Kernel density estimators are linear combinations of “bumps” centered on our observations. Typically, the
bumps are smooth—with the amount of smoothness controlled by a parameter—so that the result is a
smoothed version of our observations. For our purposes, a kernel is any smooth function K such that
K(x) ≥ 0,

∫
K(x)dx = 1,

∫
xK(x)dx = 0, and 0 < σ2

K

∫
x2K(x)dx < ∞. For simplicity, we’ll use the

Gaussian kernel, which is just the PDF of the standard Gaussian PDF, K(x) = (2π)−1/2e−x2/2.

The kernel density estimator (KDE) with bandwidth h is

f̂n(x) =
1

n

n∑
i=1

1

h
K

(
x−Xi

h

)
. (15.4)
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Figure 1: Kernel density estimator of the redshift in the data in Exercise 15.1, using the Gaussian kernel
and various bandwidths.

Exercise 15.1. Load the Sloan Digital Sky Survey data with:

library(readr)

galaxy <-

read_table("https://www.stat.cmu.edu/~larry/all-of-nonpar/=data/galaxy.dat",

col_names = c(’ra’, ’declination’, ’rs’))

Write a function that takes as input arguments a point x, a vector of observations, and a bandwidth,
and returns the KDE at x. Plot the KDE for a few different values of h. What is the effect of increasing
h? Of decreasing h?

The KDE using various bandwidths is shown in Fig. 1. Clearly, the choice of h is important to how the
resulting KDE appears. It also controls the bias-variance trade-off, and hence the theoretical properties of
the KDE. In general, h will be set at different values for different n, so we denote it by hn.

Theorem 15.1. Under regularity conditions on f ,1 the risk of the KDE using the Gaussian kernel is

R(f, f̂n) =
1

4
σ4
Kh4

n

∫
(f ′′(x))2dx+

1

nh

∫
K2(x)dx+O(n−1) +O(h6

n) . (15.5)

For a sequence x1, x2, . . . , the notation xn = O(an) means there is some finite N such that |xn/an| ≤ M < ∞
for all n > N . So in the statement of the theorem, the error of approximating R(f, f̂n) by the first two terms
decays like M/n+M ′h6

n as n → ∞ and hn → 0.

Proof. Write Kh(x,X) = K((x−X)/h)/h, so that f̂n(x) =
∑n

i=1 Kh(x,Xi)/n. Thus (show this!),

E[f̂n(x)] = E[Kh(x,X)] and Var[f̂n(x)] = Var[Kh(x,X)]/n . (15.6)

1Essentially, continuity/smoothness conditions on the second and third derivatives of f ; see Theorem 6.28 of [Was06].
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We’ll analyze the bias function via Taylor expansion, with (note that there are typos in the corresponding
proof in [Was04]; they are corrected in [Was06])

E[Kh(x,X)] =

∫
1

h
K((x− t)/h)f(t)dt (15.7)

=

∫
K(u)f(x− hu)du (15.8)

=

∫
K(u)

(
f(x)− huf ′(x) +

1

2
h2u2f ′′(x) + · · ·

)
du (15.9)

= f(x) +
1

2
h2σ2

Kf ′′(x) +O(h4) , (15.10)

where on the last line we use the facts that
∫
K(u)du = 1 and that all odd moments of the Gaussian

distribution are zero. Hence, the bias function is

bn(x) = E[f̂n(x)]− f(x) =
1

2
h2
nσ

2
Kf ′′(x) +O(h4

n) . (15.11)

Similarly, the variance is

vn(x) =
f(x)

∫
K2(u)du

nhn
+O(n−1) . (15.12)

Squaring the bias and integrating over x yields (15.5) (show this!).

Activity 15.1. Show that squaring the bias and integrating over x yields (15.5). Show that the asymp-
totically optimal bandwidth is

h∗ =

( ∫
(K(x))2dx

nσ4
K

∫
(f ′′(x))2dx

)1/5

, (15.13)

and that using h∗ results in a risk of

R∗(f, f̂n) = O(n−4/5) . (15.14)

The rate of convergence of the asymptotically optimal KDE is n−4/5. This is slower than the typical
parametric rate of n−1, but faster than the rate of n−2/3 that is achieved by estimating f with histograms
(as in Ch. 20.2 of [Was04]). Qualitatively, this is typical of nonparametric estimators; we pay a price for
not making parametric assumptions, but using smooth functions to estimate smooth functions works better
than using non-smooth functions to estimate smooth functions.

In practice, h is selected by cross-validation, which in this case can be computed (up to a constant) by

Ĵ(f̂) =

∫
f̂(x)2dx− 2

n

n∑
i=1

f̂−i(Xi) , (15.15)

where f̂−i denotes the KDE obtained by excluding Xi from the data. This is an unbiased estimator, and
has a convenient approximation that can be computed efficiently (see [Was04; Was06]).

2. Nonparametric regression

Recall that the aim of regression is to estimate

r(x) = E(Y |X = x) . (15.16)
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There are many nonparametric regression estimators, most of which take the form of a weighted average of
the Yi’s, where the weights are formed from nearby observations to the corresponding Xi’s. The Nadaraya–
Watson kernel estimator (NWKE) is

r̂(x) =

n∑
i=1

wi(x)Yi , with wi(x) =
Kh(x, xi)∑n
j=1 Kh(x, xj)

. (15.17)

We can view wi(x) as the KDE of the conditional PDF f(y|x) at y = yi, and the overall NWKE as the
plug-in estimator of

E(Y |X = x) =

∫
yf(y|x)dy . (15.18)

Activity 15.2. Show that the NWKE is equal to∫
yf̂(y|x)dy =

∫
yf̂(x, y)dy

f̂(x)
,

where f̂(x, y) and f̂(x) are the KDEs, assuming that the kernel on (x, y) is K(x, y) = K(x)K(y).

The analysis of risk here is much more involved, but the asymptotically optimal sequence of bandwidths is
h∗ = O(n−1/5), under which the risk converges at O(n−4/5), as with KDE.
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