STAT 460/560 Class 14: One-Step Estimators and Examples

Ben Bloem-Reddy

Reading: Chapter 5.3 and 5.7, [van98].

1. Example: Nonlinear least squares

Suppose we have a random sample (X1,Y7),...,(X,,Y,) from the distribution Py,, which follows
Y:feo(X)+67 EQO(G‘X):()?

where fp, belongs to a parametric family of regression functions, for example fg(x) = 61 +62e%%. To estimate
0, the least squares estimator minimizes

0 Z(n — fo(X:))? .

Maximizing the negative of this leads to the M-estimator for mg(z,y) = —(y — fo(x))?. It should converge
to the maximizer of

0+ Pyymo = —Po, (fo, — fo)* — Eo,[€*] , (14.1)

which at 6 = 0y equals —Ejy, [¢?].

Activity 14.1. Show that (14.1) holds.

As long as 6 # 6y implies that Py, (fo(X) # fo,(X)) > 0 then 6 is identifiable and we can ask whether
Theorem 5.23 holds. Suppose that our regression model is regular at € in the sense that

Py (foo = f0)* = Pa, (9 = 00) " fo,)* + 010 — 60]?) (14.2)

holds in a neighborhood of 6.

Activity 14.2. Show that if (14.2) holds, then with Vp, = —2Ps, fa,fo and rivg,(z,y) = 2(y —
foo (@) foo (@),

Vil = 00) = <Vi,' 7= 3, (X, ¥) + 0 (1)

Show that therefore, if e Ll X
\/ﬁ(én - 90) ~ N<0’ E90 [62}P90 (f90 (X)f90 (X)T)_l) 0

2. One-step estimators

As van der Vaart points out, the method of Z-estimators has two disadvantages. First, it may be difficult
to find the solutions of the estimating equations. Second, consistency requires that the estimating equations
are well-behaved over the entire parameter set. Multiple roots, ill-conditioned numerical problems, etc., can
cause issues.



Suppose that we have a Z-estimator 6, for the estimating equation ¥, and that ¥, ( n) 7 0. Perhaps
it could be improved upon by following the gradient of ¥,, at 6, towards zero. That is, we can solve the
following equation for 6

U (0,) + Un(0,)(0 = 6,) =0 = 6, =6, — 0(0,) " 0,(0,) -

én is called a one-step estimator because it is one iteration (one step) of the Newton-Raphson method
for root-finding, as illustrated in Fig. 1. (Refer back to section 7 in Class 8 for more information, including
how the algorithm can be used for finding function optima.) As a practical matter, this could be iterated
multiple times. It may improve finite-sample performance, but it won’t change the asymptotic analysis that
follows.

Note, of course, that if 6,, is found by using Newton—Raphson to solve ¥,, then this method may or may not
be advantageous. One must show that solving the estimating equations with Newton—Raphson produces a
consistent estimator. But in some situations, solving the estimating equations is not the only way to obtain
a consistent estimator. For example, method-of-moments estimators are consistent under relatively weak
conditions. (More on this below.) According to the theorem below, forming a one-step estimator then yields
the good asymptotic normality properties effectively separately from achieving consistency.

In order for the theory to work out, we need ¥, to satisfy the following. For every constant M > 0 and a
given nonsingular matrix Wy,

sup  [Vr(¥a(0) = Wa(00)) — Wov/n(0 — 60))| 0. (14.3)

Vnl|0—=0o]| <M

This looks like differentiability of ¥, at 6y, but it’s weaker than that. As long as there is a sequence of
nonsingular (random) matrices \i’n,o that converge in probability to ¥y, then things will work out. Of course,
if ¥, are differentiable and the derivatives converge to ¥y then the condition (14.3) will be satisfied. With
that, define the one-step estimator by

O = 00 — W, 40 (0n) - (14.4)
Recall that a sequence of estimators 6, is called \/n-consistent if \/n(, — 6y) is bounded in probability. If
that is the case then as n gets large, 6,, is withing \/ﬁ_l/ % of 0y with high probability.
Theorem 14.1. Let +/n¥,(8y) ~ Z, for some random wvariable Z. Suppose that (14.3) holds. For a
sequence of \/n-consistent estimators 6,, and ¥, 0 — Py, the corresponding one-step estimator 0, satisfies

Vb, —0y) = —051/nW,,(6y) + op(1) .

Proof. The estimator W,, oy/n (8, — 6p) satisfies

W,0V/n(05 = 00) = W 0v/n(0, = T, 5 W0 (0) — o)
= Wy, 0v/n(0n — o) = V(W (0) — Un(6o)) — /W (6) -
The middle term, by (14.3), can by replaced by Woy/n (6, — 0o) + op(1), yielding
W, 0710y — 00) = W, 0v/n(0, — 00) — Wor/n(6,, — 00) — /00, () + op(1)
= (¥n,0 = B0) /10, — 00) =W, (60) + op(1)

op(1) Op(1)

—\/ﬁ\lfn(eo) + Op(l) .

0
On

Therefore, by Slutsky’s lemma,

\/ﬁ(én — 90) = —\1151\/5\1/”(00) + Op(l) .



y=fx

/Cnﬂ

Figure 1: Illustration of one Newton—Raphson iteration for finding the solution to f(z) = 0. (Source:
https://commons.wikimedia.org/wiki/File:Newton_iteration.svg.)

3. Method-of-moments estimators (briefly)

These are discussed in more detail in Chapter 4.1 of [van98], but they’re pretty much what they sound like.
Suppose that for a vector of functions f = (f1,..., fx) the function e: © — R¥ is e(f) — Ppf. The moment
estimator 6,, satisfies

S F(X) =P, f=elby). (14.5)

=1

Buf=

Setting f;(z) = 27 is the method of moments in its simplest form.

If the function e is one-to-one and continuous (and the usual regularity conditions for the LLN apply to f
and Py, ), then it is not hard to see that the moment estimators are consistent because

O = e L (Pof) = e L (Poy f) = e e(f)) = o .

If e~ is also differentiable and P, f is asymptotically normal, then so is \/ﬁ(én —6p), by the delta method.

A downside is that moment estimators often have high variance. However, they are known to be useful as
initial conditions to maximum likelihood estimation; the one-step procedure above gives that some theoretical
justification.

Exercise 14.1. Derive the method-of-moment estimators for Xq, ..., X,, sampled from Gamma(c, ().

What is the corresponding asymptotic covariance matrix from Theorem 4.1 of [van98]? How does it
compare to the asymptotic covariance matrix of the corresponding one-step estimator?
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