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Reading: Chapter 5.3 and 5.7, [van98].

1. Example: Nonlinear least squares

Suppose we have a random sample (X1, Y1), . . . , (Xn, Yn) from the distribution Pθ0 , which follows

Y = fθ0(X) + ϵ , Eθ0(ϵ | X) = 0 ,

where fθ0 belongs to a parametric family of regression functions, for example fθ(x) = θ1+θ2e
θ3x. To estimate

θ, the least squares estimator minimizes

θ 7→
n∑

i=1

(Yi − fθ(Xi))
2 .

Maximizing the negative of this leads to the M-estimator for mθ(x, y) = −(y − fθ(x))
2. It should converge

to the maximizer of

θ 7→ Pθ0mθ = −Pθ0(fθ0 − fθ)
2 − Eθ0 [ϵ

2] , (14.1)

which at θ = θ0 equals −Eθ0 [ϵ
2].

Activity 14.1. Show that (14.1) holds.

As long as θ ̸= θ0 implies that Pθ0(fθ(X) ̸= fθ0(X)) > 0 then θ0 is identifiable and we can ask whether
Theorem 5.23 holds. Suppose that our regression model is regular at θ0 in the sense that

Pθ0(fθ0 − fθ)
2 = Pθ0((θ − θ0)

⊤ḟθ0)
2 + o(∥θ − θ0∥2) (14.2)

holds in a neighborhood of θ0.

Activity 14.2. Show that if (14.2) holds, then with Vθ0 = −2Pθ0 ḟθ0 ḟ
⊤
θ0

and ṁθ0(x, y) = 2(y −
fθ0(x))

⊤ḟθ0(x),

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ṁθ0(Xi, Yi) + oP (1) .

Show that therefore, if ϵ⊥⊥X,

√
n(θ̂n − θ0)⇝ N (0, Eθ0 [ϵ

2]Pθ0(ḟθ0(X)ḟθ0(X)⊤)−1) .

2. One-step estimators

As van der Vaart points out, the method of Z-estimators has two disadvantages. First, it may be difficult
to find the solutions of the estimating equations. Second, consistency requires that the estimating equations
are well-behaved over the entire parameter set. Multiple roots, ill-conditioned numerical problems, etc., can
cause issues.
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Suppose that we have a Z-estimator θ̃n for the estimating equation Ψn, and that Ψn(θ̃n) ̸= 0. Perhaps
it could be improved upon by following the gradient of Ψn at θ̃n towards zero. That is, we can solve the
following equation for θ

Ψn(θ̃n) + Ψ̇n(θ̃n)(θ − θ̃n) = 0 ⇒ θ̂n = θ̃n − Ψ̇(θ̃n)
−1Ψn(θ̃n) .

θ̂n is called a one-step estimator because it is one iteration (one step) of the Newton–Raphson method
for root-finding, as illustrated in Fig. 1. (Refer back to section 7 in Class 8 for more information, including
how the algorithm can be used for finding function optima.) As a practical matter, this could be iterated
multiple times. It may improve finite-sample performance, but it won’t change the asymptotic analysis that
follows.

Note, of course, that if θ̃n is found by using Newton–Raphson to solve Ψn then this method may or may not
be advantageous. One must show that solving the estimating equations with Newton–Raphson produces a
consistent estimator. But in some situations, solving the estimating equations is not the only way to obtain
a consistent estimator. For example, method-of-moments estimators are consistent under relatively weak
conditions. (More on this below.) According to the theorem below, forming a one-step estimator then yields
the good asymptotic normality properties effectively separately from achieving consistency.

In order for the theory to work out, we need Ψn to satisfy the following. For every constant M > 0 and a
given nonsingular matrix Ψ̇0,

sup√
n∥θ−θ0∥<M

∥
√
n(Ψn(θ)−Ψn(θ0))− Ψ̇0

√
n(θ − θ0))∥

p−→ 0 . (14.3)

This looks like differentiability of Ψn at θ0, but it’s weaker than that. As long as there is a sequence of
nonsingular (random) matrices Ψ̇n,0 that converge in probability to Ψ̇0, then things will work out. Of course,

if Ψn are differentiable and the derivatives converge to Ψ̇0 then the condition (14.3) will be satisfied. With
that, define the one-step estimator by

θ̂n = θ̃n − Ψ̇−1
n,0Ψn(θ̃n) . (14.4)

Recall that a sequence of estimators θ̃n is called
√
n-consistent if

√
n(θ̃n − θ0) is bounded in probability. If

that is the case then as n gets large, θ̃n is withing
√
n
−1/2

of θ0 with high probability.

Theorem 14.1. Let
√
nΨn(θ0) ⇝ Z, for some random variable Z. Suppose that (14.3) holds. For a

sequence of
√
n-consistent estimators θ̃n and Ψ̇n,0

p−→ Ψ̇0, the corresponding one-step estimator θ̂n satisfies

√
n(θ̂n − θ0) = −Ψ̇−1

0

√
nΨn(θ0) + oP (1) .

Proof. The estimator Ψ̇n,0
√
n(θ̂n − θ0) satisfies

Ψ̇n,0

√
n(θ̂n − θ0) = Ψ̇n,0

√
n(θ̃n − Ψ̇−1

n,0Ψn(θ̃n)− θ0)

= Ψ̇n,0

√
n(θ̃n − θ0)−

√
n(Ψn(θ̃n)−Ψn(θ0))−

√
nΨn(θ0) .

The middle term, by (14.3), can by replaced by Ψ̇0
√
n(θ̃n − θ0) + oP (1), yielding

Ψ̇n,0

√
n(θ̂n − θ0) = Ψ̇n,0

√
n(θ̃n − θ0)− Ψ̇0

√
n(θ̃n − θ0)−

√
nΨn(θ0) + oP (1)

= (Ψ̇n,0 − Ψ̇0)

oP (1)

√
n(θ̃n − θ0)

OP (1)

−
√
nΨn(θ0) + oP (1)

= −
√
nΨn(θ0) + oP (1) .

Therefore, by Slutsky’s lemma,

√
n(θ̂n − θ0) = −Ψ̇−1

0

√
nΨn(θ0) + oP (1) .
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Figure 1: Illustration of one Newton–Raphson iteration for finding the solution to f(x) = 0. (Source:
https://commons.wikimedia.org/wiki/File:Newton_iteration.svg.)

3. Method-of-moments estimators (briefly)

These are discussed in more detail in Chapter 4.1 of [van98], but they’re pretty much what they sound like.
Suppose that for a vector of functions f = (f1, . . . , fk) the function e : Θ → Rk is e(θ)−Pθf . The moment

estimator θ̂n satisfies

P̂nf =
1

n

n∑
i=1

f(Xi) = Pθ̂n
f = e(θ̂n) . (14.5)

Setting fj(x) = xj is the method of moments in its simplest form.

If the function e is one-to-one and continuous (and the usual regularity conditions for the LLN apply to f
and Pθ0), then it is not hard to see that the moment estimators are consistent because

θ̂n = e−1(P̂nf)
p−→ e−1(Pθ0f) = e−1(e(θ0)) = θ0 .

If e−1 is also differentiable and P̂nf is asymptotically normal, then so is
√
n(θ̂n − θ0), by the delta method.

A downside is that moment estimators often have high variance. However, they are known to be useful as
initial conditions to maximum likelihood estimation; the one-step procedure above gives that some theoretical
justification.

Exercise 14.1. Derive the method-of-moment estimators for X1, . . . , Xn sampled from Gamma(α, β).
What is the corresponding asymptotic covariance matrix from Theorem 4.1 of [van98]? How does it
compare to the asymptotic covariance matrix of the corresponding one-step estimator?
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