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1. Differentiable in quadratic mean

A statistical model {Pθ : θ ∈ Θ} is differentiable in quadratic mean (DQM) if there exists a measurable
vector-valued function ℓ̇θ0 such that∫ [√

pθ(x)−
√

pθ0(x)−
1

2
(θ − θ0)

⊤ℓ̇θ0(x)
√
pθ0(x)

]2
µ(dx) = o(∥θ − θ0∥2) . (13.1)

Let’s unpack this a little bit and establish some identities that will be useful below.

First, notice the implicit assumption that each element of the model has a density (PDF) with respect to
the dominating measure µ. When X takes values in Rd, this is typically Lebesgue measure. But it doesn’t
have to be. For our purposes, just remember that

∫
f(x)pθ(x)µ(dx) =

∫
f(x)Pθ(dx) = Eθ[f((X)].

Now, what does it mean to be DQM? Recall that if Θ ⊂ Rk, a function ϕ : Θ → Rm is differentiable at θ if
there is a matrix ϕ′

θ : Θ → Rm such that

ϕ(θ + h)− ϕ(θ) = ϕ′
θ(h) + o(∥h∥) .

Comparing that to (13.1), we see that the DQM condition can be interpreted as follows.

• First notice that ∇θ

√
pθ(x) = 1

2

√
pθ(x)∇θ log pθ, so ℓ̇θ = ∇θ log pθ, which is the score function as

usual.

• Suppose that as a function of θ,
√
pθ(x) (for fixed x) is differentiable at θ0. Here, the function

ϕ(θ) =
√
pθ(x), which takes values in R (so m = 1) and ϕ′

θ0
is just the vector-valued function ℓ̇θ0 (with

h = θ − θ0).

• Now ask whether we have differentiability of
√
pθ(x) at each possible value of x. Then the LHS integral

splits over two sets, Adiff), where differentiability holds, and its complement

o(∥θ − θ0∥2)µ(Adiff) +

∫
Ac

diff

[√
pθ(x)−

√
pθ0(x)−

1

2
(θ − θ0)

⊤ℓ̇θ0(x)
√

pθ0(x)

]2
µ(dx)

≥ o(∥θ − θ0∥2)µ(Adiff) + Cµ(Ac
diff) ,

where C > 0 is some constant that results from non-differentiability on the set Ac
diff.

So, we see that if a model is DQM then
√
pθ(x) is differentiable (as a function of θ) at θ0 for µ-almost all

points x ∈ X . Because µ is a common dominating measure for the model, this means that if X ∼ Pθ then
the random function

√
pθ(X) will be differentiable with probability 1.

So what does this have to do with proving asymptotic normality of MLEs? Ultimately, we would like to
apply Theorem 5.23 in [van98], so we need to use DQM to show that using the log-likelihood of a model that
is DQM satisfies the the conditions of the theorem. To do so, we will show that log pθ is differentiable in
P -probability at θ0, which means that for every sequence θn → θ, for every ϵ > 0,

lim
n→∞

P
(∣∣∣log pθn(X)− log pθ0(X)− (θn − θ0)

⊤ℓ̇θ0(X)
∣∣∣ > ϵ

)
→ 0 . (13.2)
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We will also use the DQM property to show that log pθ0 admits a second-order Taylor expansion, which was
the other main requirement for Theorem 5.23.

We’re almost ready for the theorem and proof. But let’s derive a couple of identities that we’ll refer to in
the proof. First, for a sequence of vectors hn → h ∈ Θ, define θn := θ0 + hn/

√
n, and

Wn(X) := 2

(√
pθn(X)

pθ0(X)
− 1

)
.

Then

log pθn(X)− log pθ0(X) = 2 log

(
1 +

1

2
Wn(X)

)
. (13.3)

Moreover, DQM can be written as∫ (√
n
1

2
Wn(x)−

1

2
h⊤
n ℓ̇θ0(x)

)2

pθ0(x)µ(dx) = o(∥h2
n∥) = o(1) . (13.4)

Re-writing as an expectation, we see that

Eθ0

[(√
nWn(X)− h⊤

n ℓ̇θ0(X)
)2]

→ 0 ,

and therefore
√
nWn(X)

qm−→ h⊤ℓ̇θ0(X), which implies that
√
nWn(X)

Pθ0−→ h⊤ℓ̇θ0(X).

Finally going back to the DQM criterion, we see that the sequence
√
n(
√
pθn(X)−

√
pθ0(X)) converges to

1
2h

⊤ℓ̇θ0 in L2(µ).

Now suppose that h → 0. Then ∫ (√
pθn(x)−

√
pθ0(x)

)2
µ(dx) → 0 ,

implying that
√
pθn(X) →

√
pθ0(X) in L2(µ).

Finally,

Pθ0h
⊤ℓ̇θ0 =

∫
1

2
h⊤ℓ̇θ0(x)

√
pθ0(x)2

√
pθ0(x)µ(dx)

= lim
n

∫ √
n(
√
pθn(x)−

√
pθ0(x))(

√
pθn(x) +

√
pθ0(x))µ(dx)

= lim
n

∫ √
npθn(x)µ(dx)−

∫ √
npθ0(x)µ(dx) = 0 .

We’ll use all of these in the proof below.

Theorem 13.1. Suppose that the model {Pθ : θ ∈ Θ} is DQM at an inner point θ0 of Θ ⊂ Rk. Suppose
that there exists a measurable function ℓ̇ with Pθ0 ℓ̇

2 < ∞ such that in a neighborhood of θ0,

| log pθ1(x)− log pθ2(x)| ≤ ℓ̇(x)∥θ1 − θ2∥ .

If the Fisher information matrix Iθ0 = P (ℓ̇θ0 ℓ̇
⊤
θ0
) is nonsingular and θ̂n

p−→ θ0, then

√
n(θ̂n − θ0) = I−1

θ0

1√
n

n∑
i=1

ℓ̇θ0(Xi) + oPθ0
(1) , (13.5)

from which asymptotic normality (with mean zero and covariance matrix I−1
θ0

) follows.
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Proof. Above, we showed that
√
nWn(X)

Pθ0−→ h⊤ℓ̇θ0(X). By the continuous mapping theorem, we also have

that nWn(X)2
Pθ0−→ h⊤ℓ̇θ0(X)ℓ̇θ0(X)⊤h. Because

√
nWn(X)

qm−→ h⊤ℓ̇θ0(X), we also have that Eθ0 [nWn(X)2] →
h⊤Iθ0h.

By (13.3),

√
n(log pθn(X)− log pθ0(X)) = 2

√
n log

(
1 +

1

2
Wn(X)

)
= 2

√
n

(
1

2
Wn(X)− 1

8
Wn(X)2 +Wn(X)2R(Wn(X))

)
,

where R is a function satisfying R(w) → 0 as w → 0 (the second equality and the function R follow from
the Taylor expansion of log(1 + w) = w − 1

2w
2 + w2R(w) around w = 0). Therefore,

√
n(log pθn(X)− log pθ0(X)) = h⊤ℓ̇θ0(X) + oPθ0

(1) .

The higher-order terms converge to zero in probability because:
√
nWn(X) = nWn(X)/

√
n = ((h⊤ℓ̇θ0(X))2+

oP (1))/
√
n = (OP (1) + oP (1))/

√
n

p−→ 0. The second term is OP (1)oP (1) = oP (1). This shows that the
function θ 7→ log pθ is differentiable in Pθ0-probability at θ0. (Which is one of the necessary conditions for
Theorem 5.23.)

The above convergence in probability can be strengthened to convergence in quadratic mean.1

We still need to show that log pθ0 admits a second-order Taylor expansion. To that end,

Pθ0(nWn) = 2n

(∫ √
pθn(x)

pθ0(x)
pθ0(x)µ(dx)− 1

)
− 0

= 2n

(∫ √
pθn(x)

√
pθ0(x)µ(dx)− 1

)
= −n

(∫
(
√

pθn(x)−
√

pθ0(x))
2µ(dx)

)
→ −1

4
h⊤Pθ0(ℓ̇θ0 ℓ̇

⊤
θ0)h = −1

4
h⊤Iθ0h .

Now, using the Taylor series approximation of log(1 + w) again,

nPθ0(log pθn − log pθ0) = 2nEθ0 [log(1 +
1

2
Wn(X))]

= Eθ0 [nWn(X)]− 1

4
Eθ0 [nWn(X)2] + Eθ0 [nWn(X)2R(Wn(X))]

→ −1

2
h⊤Iθ0h .

This establishes the required second-order Taylor expansion. Hence, Theorem 5.23 applies.
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1Roughly, the argument is to use the Lipschitz condition and the dominated convergence theorem to show that the sequence
n(log pθn (X) − log pθ0 (X))2 is uniformly integrable, which with the convergence in probability, implies that the convergence
also holds in quadratic mean.
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