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Reading: Chapter 5.3, [van98].

Last time, we established consistency for M- and Z-estimators under a couple of different conditions. Today,
we’ll look at asymptotic normality. Following van der Vaart, we’ll start with Z-estimators. Recall that a
Z-estimator θ̂n solves

Ψn(θ) =
1

n

n∑
i=1

ψθ(Xi) = P̂nψθ = 0 .

We’ll assume that Pψθ0 = 0, so that θ0 is (asymptotically) the value of θ to which θ̂n converges.

Classically, one assumes that θ 7→ Ψn(θ) has two derivatives, at which point the proof of asymptotic normality
proceeds pretty much the same as how we proved asymptotic normality for MLEs a few weeks ago. Instead,
we won’t assume the existence of a second derivative, replacing it with a Lipschitz continuity condition:
there is a measurable function ψ̄ with Pψ̄2 <∞ such that for every θ1, θ2 in a neighborhood of θ0, and each
x,

∥ψθ1(x)− ψθ2(x)∥ ≤ ψ̄(x)∥θ1 − θ2∥ . (12.1)

Theorem 12.1. For each θ in an open subset of Rk, let x 7→ ψθ(x) be a measurable vector-valued function
satisfying (12.1). Assume the following of the map θ 7→ Pψθ: it has a zero at θ0, that P∥ψθ0∥2 <∞, and it

is differentiable at θ0, with invertible derivative matrix Vθ0 . If P̂nψθ̂n
= oP (n

−1/2) and θ̂n
p−→ θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ψθ0(Xi) + oP (1) , (12.2)

which implies that

√
n(θ̂n − θ0)⇝ Nk(0, V

−1
θ0
P (ψθ0ψ

⊤
θ0)(V

−1
θ0

)⊤) . (12.3)

Proof. First, let’s establish something easy:

√
n(P̂nψθ0 − Pψθ0)⇝ Nk(0, V

−1
θ0
P (ψθ0ψ

⊤
θ0)(V

−1
θ0

)⊤) .

This follows from the fact that P̂nψθ0
p−→ Pψθ0 = 0 (by the LLN), the CLT and delta method.

Next, van der Vaart tells us that the consistency of θ̂n and the Lipschitz condition (12.1) imply that

√
n(P̂nψθ̂n

− Pψθ̂n
)−

√
n(P̂nψθ0 − Pψθ0)

p−→ 0 . (12.4)

We have to take his word for this because establishing it requires (again) tools from Chapter 19. But we can
sort of see how it might work in the case that we have a nonrandom sequence θn → θ0. First, note that for
fixed nonrandom θn,

E[
√
n(P̂nψθn − Pψθn)] = E[

√
n(P̂nψθ0 − Pψθ0)] = 0 , and P∥ψθn − ψθ0∥2 ≤ Pψ̄2∥θn − θ0∥2 → 0 .
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The second term bounds the variances, which therefore converge to zero.

Since
√
nP̂nψθ̂ = oP (1) by assumption and Pψθ0 = 0, we can write

√
n(P̂nψθ̂n

− Pψθ̂n
) =

√
n(Pψθ0 − Pψθ̂n

) + oP (1) .

Since Pψθ is differentiable at θ0, this becomes

√
n(P̂nψθ̂n

− Pψθ̂n
) =

√
nVθ0(θ0 − θ̂n) + oP (1 +

√
n∥θ0 − θ̂n∥) .

On the other hand, (12.4) implies that
√
n(P̂nψθ̂n

− Pψθ̂n
) =

√
n(P̂nψθ0 − Pψθ0) + oP (1), the previous

equation becomes

√
n(P̂nψθ0 − Pψθ0) + op(1) =

√
nVθ0(θ0 − θ̂n) + oP (1 +

√
n∥θ0 − θ̂n∥) . (12.5)

We’re almost there, but we need to show that the error term oP (
√
n∥θ0 − θ̂n∥) doesn’t blow up. We can

do so by showing that
√
n∥θ0 − θ̂n∥ = OP (1) (i.e., it is bounded in probability). (See the activity below.)

This has a name: θ̂n is
√
n-consistent. One of van der Vaart’s rules of calculus for oP and OP is that

oP (OP (1)) = oP (1), from which our result will follow.

Going back to (12.5), multiplying by V −1
θ0

yields

√
n(θ̂n − θ0) = −V −1

θ0

√
n(P̂nψθ0 − Pψθ0) + oP (1) ,

which is (12.2).

Activity 12.1. Finish the proof by showing that
√
n∥θ0 − θ̂n∥ = OP (1).

Hint : Recall that if a sequence Xn converges in distribution then it is bounded in probability.

1. Asymptotic normality of M-estimators

Recall that θ̂n is an M-estimator if it maximizes

P̂nmθ ,

which in the limit Pmθ is assume to be maximized at θ0. For the next theorem, we assume that θ 7→ Pmθ

admits a second-order Taylor expansion

Pmθ = Pmθ0 +
1

2
(θ − θ0)

⊤Vθ0(θ − θ0) + o(∥θ − θ0}2) , (12.6)

where Vθ is the second derivative matrix.

Theorem 12.2. For each θ in an open subset of Rk, let x 7→ mθ be a measurable function. Let θ 7→ mθ(x) be
differentiable at θ0 for P -almost every x, with derivative ṁθ(x), and such that θ 7→ mθ satisfies the Lipschitz
condition (12.1) for some bounding function m̄(x). Moreover, assume that θ 7→ Pmθ admits a second-order
Taylor expansion (12.6) at a point of maximum θ0, with invertible symmetric second derivative matrix Vθ0 .

If P̂nmθ̂ ≥ supθ P̂nmθ − oP (n
−1 and θ̂

p−→ θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ṁθ0(Xi) + oP (1) , (12.7)

which implies that

√
n(θ̂n − θ0)⇝ Nk(0, V

−1
θ0
P (ṁθ0ṁ

⊤
θ0)(V

−1
θ0

)) . (12.8)
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Proof. The proof relies on two technical lemmas proved elsewhere (one in Chapter 19 (again!) and one near
the end of Chapter 5). The first is that for every random sequence hn that is bounded in probability,

√
n(P̂n

[√
n(mθ0+hn/

√
n −mθ0)− h⊤n ṁθ0

]
− P

[√
n(mθ0+hn/

√
n −mθ0)− h⊤n ṁθ0

]
)

p−→ 0 .

Secondly,
√
n∥θ̂n − θ0∥ = OP (1). With these in hand, we can complete the proof.

First, using the second-order Taylor expansion of Pmθ, we can rearrange the previous equation as

nP̂n(mθ0+hn/
√
n −mθ0) =

1

2
h⊤n Vθ0hn +

√
n(P̂nh

⊤
n ṁθ0 − Ph⊤n ṁθ0) + oP (1) .

Because ĥn :=
√
nθ̂n − θ0 is bounded in probability and h̃n := −V −1

θ0

√
n(P̂nṁθ0 − Pṁθ0) converges in

distribution (and therefore is also bounded in probability), this holds for each of them. Note that θ0 +

ĥn/
√
n = θ̂n. Plugging these in, we get

nP̂n(mθ̂n
−mθ0) =

1

2
ĥ⊤n Vθ0 ĥn +

√
n(P̂nĥ

⊤
n ṁθ0 − Pĥ⊤n ṁθ0) + oP (1)

nP̂n(mθ0+h̃n/
√
n −mθ0) = −1

2

√
n(P̂nṁθ0 − Pṁθ0)

⊤V −1
θ0

√
n(P̂nṁθ0 − Pṁθ0) + oP (1)

By assumption, θ̂n approximately maximizes θ 7→ P̂nmθ, so the LHS of the first equation is greater than the
LHS of the second, up to error of oP (1), and therefore the same holds for the RHS. Taking the difference
and completing the square, we get

1

2
(ĥn + V −1

θ0

√
n(P̂nṁθ0 − Pṁθ0))

⊤Vθ0(ĥn + V −1
θ0

√
n(P̂nṁθ0 − Pṁθ0)) + oP (1) ≥ 0 .

Since θ0 maximizes Pmθ, and the matrix of second derivatives Vθ0 is invertible, it must be strictly negative
definite. Therefore, the quadratic form must converge to zero in probability, and the same must be true for
∥
√
n(θ̂n − θ0) + V −1

θ0

√
n(P̂nṁθ0 − Pṁθ0)∥.

Summing up,
√
n(θ̂n−θ0) = −V −1

θ0

√
n(P̂nṁθ0 −Pṁθ0)+oP (1). Since Pṁθ0 = 0, the CLT and delta method

yield the asymptotic normality.

Exercise 12.1. Apply the previous theorem to the sample median of X1, . . . , Xn with CDF F and PDF
f to show that it is asymptotically normal with variance 1/(2f(θ0))

2.

Hint : The sample median is also the M-estimator for mθ(x) = |x− θ| − |x|.
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