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Reading: Chapter 5.1-5.2, [van98].

1. M- and Z- estimators

A common way to estimate a parameter θ (or functional θ(P )) from an i.i.d. sample X1, . . . , Xn ∼ P is to
maximize an objective

θ 7→Mn(θ) :=
1

n

n∑
i=1

mθ(Xi) , (11.1)

where mθ is a known, fixed R-valued function. An estimator θ̂n that maximizes Mn(θ) over Θ is called an
M-estimator. An example that we’ve already seen is maximum likelihood, where mθ = log fθ.

When appropriate derivatives exist, maximizing Mn often is equivalent to solving the system of equations

Ψn(θ) :=

n∑
i=1

ψθ(Xi) = 0 . (11.2)

Here ψθ is vector-valued, typically one dimension for each component of θ. In the example of maximum
likelihood, ψθ is the score function.

Abstracting away from derivatives, any estimator θ̂n that is obtained by solving a system of equations like
(11.2) is called a Z-estimator (for zero). van der Vaart [van98] has some examples other than maximum
likelihood of each type.

Throughout, θ0 will denote the true underlying parameter/functional.

Activity 11.1. Assume that Xi ∈ R. Show that θ(P ) = E[X] (the sample mean) and θ(P ) = the
sample median can be written as Z-estimators. Show that both functions are nonincreasing in θ.

2. Random functions

Denote by P̂n the empirical measure, P̂n(A) = 1
n

∑n
i=1 δXi

(A), which is just the generalization of the
empirical CDF to more general spaces. Using operator notation for expectations, Pf =

∫
f(x)dP (x), we

can write

Mn(θ) = P̂nmθ , and Ψn(θ) = P̂nψθ .

Viewed as functions of θ, these are random functions. The randomness comes from the sample X1, . . . , Xn.
Fig. 1 shows an example. By the law of large numbers, they converge in probability pointwise,

Mn(θ)
p−→M(θ) = Pmθ , and Ψn(θ)

p−→ Ψ(θ) = Pψθ , θ ∈ Θ .

The main objective today is to prove that under appropriate conditions, M- and Z-estimators are consistent,
i.e., θ̂n

p−→ θ0. Since an M-estimator θ̂n maximizes the random function θ 7→ Mn(θ), the estimator implic-
itly depends on the entire function. Hence, pointwise consistency Mn(θ)

p−→ M(θ) is not strong enough.
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Intuitively, if there are values of θ where Mn(θ) is (erroneously) large and for which Mn(θ) also converges

very slowly, then we may not be able to guarantee that Mn(θ̂n)
p−→M(θ̂n).

3. Consistency of M-estimators: uniform convergence

Assuming that Θ is a metric space1 with metric d. We want to show consistency of M-estimators θ̂n, i.e.,
that d(θ̂n, θ0)

p−→ 0.

We’ll start with a result that is very similar to our proof of the consistency of MLEs. (In fact, it’s essentially
the same.) But it’s worth looking at again and thinking carefully about why/how it works.

Theorem 11.1. Let Mn be random functions and M a fixed function of θ such that for every ϵ > 0,

1. supθ∈Θ |Mn(θ)−M(θ)| p−→ 0.

2. supθ:d(θ,θ0)≥ϵM(θ) < M(θ0).

If θ̂n is a sequence of estimators such that Mn(θ̂n) ≥Mn(θ0)− oP (1), then θ̂n converges in probability to θ0.

What are the assumptions? The first is a uniform law of large numbers (ULLN), which as we will see shortly
is a generally useful assumption/property. It is a stochastic property, having to do with the set of functions
{mθ : θ ∈ Θ} and the underlying distribution P . Proving that a sequence of estimators satisfies a ULLN
can be quite challenging, and often requires techniques from empirical process theory, which is the subject
of Ch. 19 of [van98]. Ch. 4 of [Wai19] takes a related but different approach to ULLNs. All of that is beyond
the scope of this course, so be aware that there is a lot packed in to the first assumption.

The second assumption is purely a property ofM , ensuring that the maximum is well separated, in the sense
that M(θ) is close to M(θ0) only if d(θ, θ0) is small.

Finally, the condition that θ̂n is a sequence of estimators such that Mn(θ̂n) ≥ Mn(θ0) − oP (1) allows us
to apply the theorem to estimators that nearly maximize Mn, rather than the exact maximization that we
required in Class 8. (This is the main point of difference in the proof.)

Proof. By assumption, Mn(θ̂n) ≥Mn(θ0)− oP (1). The uniform convergence implies pointwise convergence,

such that Mn(θ0)
p−→M(θ0), so that Mn(θ̂n) ≥M(θ0)− oP (1). Therefore,

M(θ0)−M(θ̂n) ≤Mn(θ̂n)−M(θ̂n) + oP (1)

≤ sup
θ

|Mn(θ)−M(θ)|+ oP (1)
p−→ 0 ,

where the convergence follows from Assumption 1. Now, by Assumption 2, for every ϵ > 0 there exists a
δ > 0 such that M(θ) < M(θ0)− δ for every d(θ, θ0) ≥ ϵ. Therefore, the condition d(θ, θ0) ≥ ϵ implies that
M(θ) < M(θ0)− δ and hence

P{d(θ̂n, θ0) ≥ ϵ} ≤ P{M(θ̂n) < M(θ0)− δ} → 0 .

We can apply this result to Z-estimators by noting that a zero of Ψn maximizes the function θ 7→ −∥Ψn(θ)∥.
See Theorem 5.9 in [van98] for a precise statement.

4. Consistency of Z-estimators: Uniqueness of solution or monotonicity

The ULLN assumption often can be replaced, but as van der Vaart notes, there is not a “one-size-fits-all”
approach. Here’s an example that works in some interesting cases.

1A metric space is a set equipped with a metric, or distance, function d. Recall that d : Θ × ΘR is a metric if for all
θ, θ′, θ′′ ∈ Θ: i) d(θ, θ) = 0; ii) if θ ̸= θ′ then d(θ, θ′) > 0; iii) d(θ, θ′) = d(θ′, θ); and iv) d satisfies the triangle inequality,
d(θ, θ′′) ≤ d(θ, θ′) + d(θ′, θ′′).
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Lemma 11.2. Let Θ be a subset of R, and let Ψn be random functions and Ψ a fixed function of θ such
that Ψn(θ)

p−→ Ψ(θ) for every θ ∈ Θ. Assume that each map θ 7→ Ψn(θ) is:

1. continuous and has exactly one zero θ̂n; or

2. nondecreasing with Ψn(θ̂n)
p−→ 0.

Let θ0 be a point such that Ψ(θ0 − ϵ) < 0 < Ψ(θ0 + ϵ) for every ϵ > 0. Then θ̂n
p−→ θ0.

Note that this applies to nonincreasing functions Ψ̃n because Ψn = −Ψ̃n is nondecreasing.

Proof. If Assumption 1 holds, then {Ψn(θ0 − ϵ) < 0,Ψn(θ0 + ϵ) > 0} implies that {θ0 − ϵ < θ̂n < θ0 + ϵ},
and therefore

P (Ψn(θ0 − ϵ) < 0,Ψn(θ0 + ϵ) > 0) ≤ P (θ0 − ϵ ≤ θ̂n < θ0 + ϵ) .

The LHS converges to 1 because Ψn(θ0 ± ϵ)
p−→ Ψ(θ0 ± ϵ) for each ϵ > 0. Thus the RHS converges to 1,

which implies that θ̂n
p−→ θ0.

Alternatively, if Ψn(θ) is nondecreasing and θ̂n is a zero, then the same argument applies.

Let Assumption 2 hold instead. Get ready for some thorny arguments. Ψn(θ0 − ϵ) < −δ and θ̂n ≤ θ0 − ϵ

imply that Ψn(θ̂n) < −δ. However, by assumption Ψn(θ̂n) = oP (1), so P (Ψn(θ̂n) < −δ) → 0. Let

Ln = {θ̂n > θ0 − ϵ} \ {Ψn(θ0 − ϵ) < −δ}. (Note the direction of the inequality in the second event.)

Then P (Ln) = o(1). In words, since Ψn(θ0 − ϵ) < −δ and θ̂n ≤ θ0 − ϵ together imply something that has
probability approaching 0, then the event that one of them holds implies that the other one must not hold
with probability approaching 1.

Similarly, Ψn(θ0 + ϵ) > δ and θ̂ ≥ θ0 + ϵ imply that Ψn(θ̂n) > δ, and a similar argument applies to the right
tail. Hence,

P (Ψn(θ0 − ϵ) < −δ,Ψn(θ0 + ϵ) > δ) ≤ P (θ0 − ϵ < θ̂n < θ0 + ϵ) + o(1) .

For δ = min{−Ψ(θ0 − ϵ),Ψ(θ0) + ϵ}/2, the LHS converges to 1, and therefore θ̂n
p−→ θ0.

Activity 11.2. Show that if the population median θ0 is unique (i.e., P (X < θ−ϵ) < 1/2 < P (X > θ+ϵ)
for all ϵ > 0) then the sample median converges in probability to θ0.
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Figure 1: Random functions: Normal log-likelihood (fixed σ = 1) as a function of mean parameter θ (left)
and its derivative with respect to θ (right). Each curve corresponds to a different set of samples (top:
n = 10; bottom: n = 1000) generated from a standard normal distribution (θ = 0). Dashed lines correspond
to M(θ) = Pmθ and Ψ(θ) = Pψθ.
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