STAT 460/560 Class 11: Consistency of M- and Z-estimators

Ben Bloem-Reddy

Reading: Chapter 5.1-5.2, [van98].

1. M- and Z- estimators

A common way to estimate a parameter θ (or functional $\theta(P)$) from an i.i.d. sample $X_1, \ldots, X_n \sim P$ is to maximize an objective

$$\theta \mapsto M_n(\theta) := \frac{1}{n} \sum_{i=1}^n m_\theta(X_i) , \qquad (11.1)$$

where m_{θ} is a known, fixed \mathbb{R} -valued function. An estimator $\hat{\theta}_n$ that maximizes $M_n(\theta)$ over Θ is called an **M-estimator**. An example that we've already seen is maximum likelihood, where $m_{\theta} = \log f_{\theta}$.

When appropriate derivatives exist, maximizing M_n often is equivalent to solving the system of equations

$$\Psi_n(\theta) := \sum_{i=1}^n \psi_\theta(X_i) = 0.$$
(11.2)

Here ψ_{θ} is vector-valued, typically one dimension for each component of θ . In the example of maximum likelihood, ψ_{θ} is the score function.

Abstracting away from derivatives, any estimator $\hat{\theta}_n$ that is obtained by solving a system of equations like (11.2) is called a **Z-estimator** (for zero). van der Vaart [van98] has some examples other than maximum likelihood of each type.

Throughout, θ_0 will denote the true underlying parameter/functional.

Activity 11.1. Assume that $X_i \in \mathbb{R}$. Show that $\theta(P) = E[X]$ (the sample mean) and $\theta(P)$ = the sample median can be written as Z-estimators. Show that both functions are nonincreasing in θ .

2. Random functions

Denote by \hat{P}_n the **empirical measure**, $\hat{P}_n(A) = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}(A)$, which is just the generalization of the empirical CDF to more general spaces. Using operator notation for expectations, $Pf = \int f(x)dP(x)$, we can write

$$M_n(\theta) = \hat{P}_n m_{\theta}$$
, and $\Psi_n(\theta) = \hat{P}_n \psi_{\theta}$.

Viewed as functions of θ , these are **random functions**. The randomness comes from the sample X_1, \ldots, X_n . Fig. 1 shows an example. By the law of large numbers, they converge in probability pointwise,

$$M_n(\theta) \xrightarrow{P} M(\theta) = Pm_{\theta}$$
, and $\Psi_n(\theta) \xrightarrow{P} \Psi(\theta) = P\psi_{\theta}$, $\theta \in \Theta$.

The main objective today is to prove that under appropriate conditions, M- and Z-estimators are consistent, i.e., $\hat{\theta}_n \xrightarrow{P} \theta_0$. Since an M-estimator $\hat{\theta}_n$ maximizes the random function $\theta \mapsto M_n(\theta)$, the estimator implicitly depends on the entire function. Hence, pointwise consistency $M_n(\theta) \xrightarrow{P} M(\theta)$ is not strong enough. Intuitively, if there are values of θ where $M_n(\theta)$ is (erroneously) large and for which $M_n(\theta)$ also converges very slowly, then we may not be able to guarantee that $M_n(\hat{\theta}_n) \xrightarrow{P} M(\hat{\theta}_n)$.

3. Consistency of M-estimators: uniform convergence

Assuming that Θ is a metric space¹ with metric d. We want to show consistency of M-estimators $\hat{\theta}_n$, i.e., that $d(\hat{\theta}_n, \theta_0) \xrightarrow{P} 0$.

We'll start with a result that is very similar to our proof of the consistency of MLEs. (In fact, it's essentially the same.) But it's worth looking at again and thinking carefully about why/how it works.

Theorem 11.1. Let M_n be random functions and M a fixed function of θ such that for every $\epsilon > 0$,

- 1. $\sup_{\theta \in \Theta} |M_n(\theta) M(\theta)| \xrightarrow{p} 0.$
- 2. $\sup_{\theta: d(\theta, \theta_0) \ge \epsilon} M(\theta) < M(\theta_0).$

If $\hat{\theta}_n$ is a sequence of estimators such that $M_n(\hat{\theta}_n) \ge M_n(\theta_0) - o_P(1)$, then $\hat{\theta}_n$ converges in probability to θ_0 .

What are the assumptions? The first is a *uniform law of large numbers* (ULLN), which as we will see shortly is a generally useful assumption/property. It is a *stochastic* property, having to do with the set of functions $\{m_{\theta} : \theta \in \Theta\}$ and the underlying distribution P. Proving that a sequence of estimators satisfies a ULLN can be quite challenging, and often requires techniques from empirical process theory, which is the subject of Ch. 19 of [van98]. Ch. 4 of [Wai19] takes a related but different approach to ULLNs. All of that is beyond the scope of this course, so be aware that there is a lot packed in to the first assumption.

The second assumption is purely a property of M, ensuring that the maximum is well separated, in the sense that $M(\theta)$ is close to $M(\theta_0)$ only if $d(\theta, \theta_0)$ is small.

Finally, the condition that $\hat{\theta}_n$ is a sequence of estimators such that $M_n(\hat{\theta}_n) \geq M_n(\theta_0) - o_P(1)$ allows us to apply the theorem to estimators that *nearly* maximize M_n , rather than the exact maximization that we required in Class 8. (This is the main point of difference in the proof.)

Proof. By assumption, $M_n(\hat{\theta}_n) \ge M_n(\theta_0) - o_P(1)$. The uniform convergence implies pointwise convergence, such that $M_n(\theta_0) \xrightarrow{P} M(\theta_0)$, so that $M_n(\hat{\theta}_n) \ge M(\theta_0) - o_P(1)$. Therefore,

$$M(\theta_0) - M(\theta_n) \le M_n(\theta_n) - M(\theta_n) + o_P(1)$$
$$\le \sup_{\alpha} |M_n(\theta) - M(\theta)| + o_P(1) \xrightarrow{P} 0$$

where the convergence follows from Assumption 1. Now, by Assumption 2, for every $\epsilon > 0$ there exists a $\delta > 0$ such that $M(\theta) < M(\theta_0) - \delta$ for every $d(\theta, \theta_0) \ge \epsilon$. Therefore, the condition $d(\theta, \theta_0) \ge \epsilon$ implies that $M(\theta) < M(\theta_0) - \delta$ and hence

$$P\{d(\hat{\theta}_n, \theta_0) \ge \epsilon\} \le P\{M(\hat{\theta}_n) < M(\theta_0) - \delta\} \to 0.$$

We can apply this result to Z-estimators by noting that a zero of Ψ_n maximizes the function $\theta \mapsto -\|\Psi_n(\theta)\|$. See Theorem 5.9 in [van98] for a precise statement.

4. Consistency of Z-estimators: Uniqueness of solution or monotonicity

The ULLN assumption often can be replaced, but as van der Vaart notes, there is not a "one-size-fits-all" approach. Here's an example that works in some interesting cases.

¹A metric space is a set equipped with a metric, or distance, function d. Recall that $d: \Theta \times \Theta \mathbb{R}$ is a metric if for all $\theta, \theta', \theta'' \in \Theta$: i) $d(\theta, \theta) = 0$; ii) if $\theta \neq \theta'$ then $d(\theta, \theta') > 0$; iii) $d(\theta, \theta') = d(\theta', \theta)$; and iv) d satisfies the triangle inequality, $d(\theta, \theta'') \leq d(\theta, \theta') + d(\theta', \theta'')$.

Lemma 11.2. Let Θ be a subset of \mathbb{R} , and let Ψ_n be random functions and Ψ a fixed function of θ such that $\Psi_n(\theta) \xrightarrow{p} \Psi(\theta)$ for every $\theta \in \Theta$. Assume that each map $\theta \mapsto \Psi_n(\theta)$ is:

- 1. continuous and has exactly one zero $\hat{\theta}_n$; or
- 2. nondecreasing with $\Psi_n(\hat{\theta}_n) \xrightarrow{p} 0$.

Let θ_0 be a point such that $\Psi(\theta_0 - \epsilon) < 0 < \Psi(\theta_0 + \epsilon)$ for every $\epsilon > 0$. Then $\hat{\theta}_n \xrightarrow{p} \theta_0$.

Note that this applies to nonincreasing functions $\tilde{\Psi}_n$ because $\Psi_n = -\tilde{\Psi}_n$ is nondecreasing.

Proof. If Assumption 1 holds, then $\{\Psi_n(\theta_0 - \epsilon) < 0, \Psi_n(\theta_0 + \epsilon) > 0\}$ implies that $\{\theta_0 - \epsilon < \hat{\theta}_n < \theta_0 + \epsilon\}$, and therefore

$$P(\Psi_n(\theta_0 - \epsilon) < 0, \Psi_n(\theta_0 + \epsilon) > 0) \le P(\theta_0 - \epsilon \le \theta_n < \theta_0 + \epsilon) .$$

The LHS converges to 1 because $\Psi_n(\theta_0 \pm \epsilon) \xrightarrow{P} \Psi(\theta_0 \pm \epsilon)$ for each $\epsilon > 0$. Thus the RHS converges to 1, which implies that $\hat{\theta}_n \xrightarrow{P} \theta_0$.

Alternatively, if $\Psi_n(\theta)$ is nondecreasing and $\hat{\theta}_n$ is a zero, then the same argument applies.

Let Assumption 2 hold instead. Get ready for some thorny arguments. $\Psi_n(\theta_0 - \epsilon) < -\delta$ and $\hat{\theta}_n \leq \theta_0 - \epsilon$ imply that $\Psi_n(\hat{\theta}_n) < -\delta$. However, by assumption $\Psi_n(\hat{\theta}_n) = o_P(1)$, so $P(\Psi_n(\hat{\theta}_n) < -\delta) \rightarrow 0$. Let $L_n = \{\hat{\theta}_n > \theta_0 - \epsilon\} \setminus \{\Psi_n(\theta_0 - \epsilon) < -\delta\}$. (Note the direction of the inequality in the second event.) Then $P(L_n) = o(1)$. In words, since $\Psi_n(\theta_0 - \epsilon) < -\delta$ and $\hat{\theta}_n \leq \theta_0 - \epsilon$ together imply something that has probability approaching 0, then the event that one of them holds implies that the other one must *not* hold with probability approaching 1.

Similarly, $\Psi_n(\theta_0 + \epsilon) > \delta$ and $\hat{\theta} \ge \theta_0 + \epsilon$ imply that $\Psi_n(\hat{\theta}_n) > \delta$, and a similar argument applies to the right tail. Hence,

$$P(\Psi_n(\theta_0 - \epsilon) < -\delta, \Psi_n(\theta_0 + \epsilon) > \delta) \le P(\theta_0 - \epsilon < \hat{\theta}_n < \theta_0 + \epsilon) + o(1)$$

For $\delta = \min\{-\Psi(\theta_0 - \epsilon), \Psi(\theta_0) + \epsilon\}/2$, the LHS converges to 1, and therefore $\hat{\theta}_n \xrightarrow{P} \theta_0$.

Activity 11.2. Show that if the population median θ_0 is unique (i.e., $P(X < \theta - \epsilon) < 1/2 < P(X > \theta + \epsilon)$ for all $\epsilon > 0$) then the sample median converges in probability to θ_0 .

References

- [van98] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998.
- [Wai19] M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge University Press, 2019.

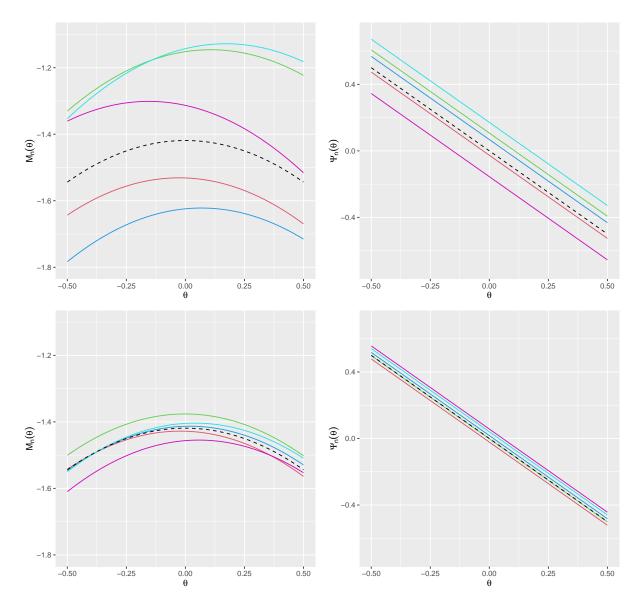


Figure 1: Random functions: Normal log-likelihood (fixed $\sigma = 1$) as a function of mean parameter θ (left) and its derivative with respect to θ (right). Each curve corresponds to a different set of samples (top: n = 10; bottom: n = 1000) generated from a standard normal distribution ($\theta = 0$). Dashed lines correspond to $M(\theta) = Pm_{\theta}$ and $\Psi(\theta) = P\psi_{\theta}$.