
STAT 460/560 Class 11: Statistical Decision Theory

Ben Bloem-Reddy

Reading: Chapter 12, [Was04].

At a high level, statistical decision theory is a framework for assessing (and comparing the performance
of statistical procedures). It connects statistical tasks like parameter estimation to real-world/practical
quantities such as cost, risk, etc.

As usual, θ ∈ Θ is a parameter, and θ̂ is an estimator. In decision theoretic terms, θ̂ is a decision rule (i.e.,
a function that maps data to a decision, or action). Note that we are not limited to parameter estimation.
As an example more closely related to the language, a decision rule could actually be a data-driven decision
on which action to take (e.g., which experiment to run next).

For simplicity, we will look for now only at parameter estimation. The discrepancy of θ̂ and θ is measured
by a loss function, L : Θ×Θ → R. A common example is squared error loss,

L(θ, θ̂) = (θ̂ − θ)2 . (11.1)

The risk of an estimator θ̂ is a function of θ,

R(θ, θ̂) = Eθ[L(θ, θ̂(X))] =

∫
L(θ, θ̂(x))f(x; θ) dx . (11.2)

When the loss is squared error, the resulting risk is just the MSE,

R(θ, θ̂) = Eθ[(θ̂(X)− θ)2] = Varθ(θ̂(X)) + biasθ(θ̂(X))2 . (11.3)

1. Comparing risk functions

How do we compare two functions? Let’s start with some examples.

Example 11.1. Let X ∼ N (θ, 1), and consider two estimators under squared error loss: θ̂1 = X and

θ̂2 = 3. The risk functions are R(θ, θ̂1) = 1 and R(θ, θ̂2) = (3− θ)2. If 2 < θ < 4 then θ̂2 has lower risk;

otherwise θ̂1 has lower risk. So neither estimator is uniformly better than the other.

Activity 11.1. Let X1, . . . , Xn ∼iid Bern(p), and consider squared error loss. Let p̂1 = X̄. Compute
the risk. (To make things easy, recall that this estimator is unbiased.)

Now suppose that we take a Bayesian approach, and use a Beta(α, β) prior, with p̂2 = E[p|Xn]. Write
down p̂2 and calculate its risk for α = β =

√
n/2.

Plot or sketch the risk functions of the two estimators. Is either one uniformly better? Do you notice
anything interesting about p̂2?

Solution: Since the variance of X̄n is p(1− p)/n, the risk of p̂1 is p(1− p)/n.
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The posterior here is Beta(α+ nX̄n, β + n− nX̄n), so

p̂2 = E[p|Xn] =
α+ nX̄n

α+ β + n
=

√
n/2 + nX̄n√

n+ n
=

1/2 +
√
nX̄n

1 +
√
n

.

The bias of p̂2 is

1/2 +
√
np

1 +
√
n

− p =
1/2− p

1 +
√
n

,

and the variance is

n

(1 +
√
n)2

np(1− p) =
p(1− p)

(1 +
√
n)2

.

Putting these together, we find that the risk of p̂2 is

R(p, p̂2) =
(1/2− p)2

(1 +
√
n)2

+
p(1− p)

(1 +
√
n)2

=
1

4(1 +
√
n)2

.

This is constant with respect to p, and is lower than the risk of p̂1 when p(1− p) < n
4(1+

√
n)2

.

In both of these examples, if we don’t know the true value of θ (which we don’t) then how should we choose
between the two estimators? Much of statistical decision theory deals with this seemingly simple question.

There are two widely used ways to turn the risk function into a number. The maximum risk is

R̄(θ̂) = sup
θ

R(θ, θ̂) . (11.4)

The Bayes risk is

r(f, θ̂) =

∫
R(θ, θ̂)f(θ) dθ , (11.5)

where f(θ) is a prior PDF/PMF.

Activity 11.2. Find the maximum risk for the two estimators from Activity 11.1. Which is lower?

Find the Bayes risk for the two estimators under a uniform prior.

Solution: The risk of p̂1 is maximized at p = 1/2, in which case it equals 1
4n .

The risk of p̂2 is constant, equal to 1
4(1+

√
n)2

. This is lower than the maximum risk of p̂1.

Under a uniform prior on p, the Bayes risk of p̂1 is

1

n

∫ 1

0

p(1− p)dp =
1

n
B(2, 2) =

1

n

Γ(2)Γ(2)

Γ(4)
=

1

6n
,

where B is the beta function, and we used the gamma function identity Γ(n) = (n− 1)!.

Since the risk of p̂2 is constant, its Bayes risk is equal to its maximum risk.

Exercise 11.1. Find the Bayes risk for the two estimators under a Beta(
√
n/2,

√
n/2) prior. Show that

the ratio of Bayes risks can be written as

r(Beta(
√
n/2,

√
n/2), p̂1)

r(Beta(
√
n/2,

√
n/2), p̂2)

= 1 +
1√
n
. (11.6)
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Solution: Under this prior, the Bayes risk of p̂1 is

1

n

∫ 1

0

p(1− p)
p
√
n/2−1(1− p)

√
n/2−1

B(
√
n/2,

√
n/2)

dp =
1

n

B(
√
n/2 + 1,

√
n/2 + 1)

B(
√
n/2,

√
n/2)

=
1

4
√
n(
√
n+ 1)

.

Taking the ratio with the Bayes risk of p̂2 yields the desired result.

Note that the Beta(
√
n/2,

√
n/2) prior isn’t likely to be motivated by any prior belief or knowledge,1 except

in the case n = 1. We’ll see later where the prior comes from.

Based on these one-number summaries of risk, we can devise general strategies for finding “good” estimators:
we might try to find θ̂ to minimize the maximum risk; alternatively, we might find θ̂ to minimize the Bayes
risk. A minimax estimator θ̂ is any estimator (it may not be unique) such that

sup
θ

R(θ, θ̂) = inf
θ̃
sup
θ

R(θ, θ̃) , (11.7)

where the infimum is taken over all possible estimators θ̃. The Bayes estimator with respect to prior f is
any estimator θ̂ such that

r(f, θ̂) = inf
θ̃
r(f, θ̃) . (11.8)

Bayes estimators are often easier to find. To see why, define the posterior risk as

r(θ̂|x) =
∫

L(θ, θ̂(x))f(θ|x) dθ . (11.9)

Theorem 11.1. The Bayes risk satisfies

r(f, θ̂) =

∫
r(θ̂|x)m(x) dx , (11.10)

where m(x) =
∫
f(x|θ)f(θ) dθ. Therefore, under squared error loss, the Bayes estimator is the posterior

expectation,

θ̂(x) =

∫
θf(θ|x) dθ = E[θ|X = x] . (11.11)

Exercise 11.2. Prove Theorem 11.1 .

Exercise 11.3. For X1, . . . , Xn ∼iid Bern(p) and a Beta(α, β) prior, what is the Bayes estimator under

squared error loss? Under L(θ, θ̂) = |θ − θ̂|?

2. Minimax decision rules

Finding minimax decision rules is in general hard, and there is no one-size-fits-all method for doing so. In
some situations, a Bayes estimator can be minimax.

Theorem 11.2. Let θ̂f be a Bayes estimator for some prior f , and therefore

r(f, θ̂f ) = inf
θ̂
r(f, θ̂) . (11.12)

Suppose that

R(θ, θ̂f ) ≤ r(f, θ̂f ) for all θ ∈ Θ . (11.13)

Then θ̂f is minimax and f is called a least favorable prior.

1Why would our prior belief/knowledge about p depend on n?
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Proof. Suppose that θ̂f is not minimax. Then there is some estimator θ̂0 such that

sup
θ

R(θ, θ̂0) < sup
θ

R(θ, θ̂f ) . (11.14)

Since the average of a function is always less than or equal to its maximum, r(f, θ̂0) ≤ supθ R(θ, θ̂0). Then

r(f, θ̂0) ≤ sup
θ

R(θ, θ̂0) < sup
θ

R(θ, θ̂f ) ≤ r(f, θ̂f ) . (11.15)

This is a contradiction, because θ̂f is the Bayes estimator under f . Hence, θ̂f is minimax.

Corollary 11.3. Suppose that θ̂ is a Bayes estimator under some prior f , and further that θ̂ has constant
risk c. Then θ̂ is minimax.

Exercise 11.4. Prove Corollary 11.3.

Solution: If θ̂ has constant risk then its Bayes risk is r(f, θ̂) =
∫
cf(θ) = c. Therefore, R(θ, θ̂) = c =

r(f, θ̂), and so Theorem 11.2 applies.

Activity 11.3. Recall that in the previous class, with X1, . . . , Xn ∼iid Bern(p) and squared error loss,
we analyzed p̂2 = E[p|Xn] when the prior is Beta(

√
n/2,

√
n/2). Argue that p̂2 is minimax.

Solution: We saw that p̂2 has constant risk and that it is the Bayes estimator under a Beta(
√
n/2,

√
n/2)

prior. By Corollary 11.3, it is minimax.

3. Optional: Prediction and empirical risk minimization

When the task is parameter estimation, risk is typically a purely theoretical construct: the risk usually
depends on an unknown parameter and therefore cannot be estimated from data. However, consider
the problem of predicting Y from X with an estimator Ŷ = θ̂(X). The estimator will be fit to pairs
((X1, Y1), . . . , (Xn, Yn)) ∼iid P , and the risk is

R(P, θ̂) = EP [L(Y, θ̂(X))] =

∫
L(y, θ̂(x))dP (x, y) . (11.16)

This depends on the unknown distribution P . However, it can be estimated by the empirical risk

R̂(θ̂) = R(P̂n, θ̂) =
1

n

n∑
i=1

L(Yi, θ̂(Xi)) . (11.17)

Minimizing this type of objective is called empirical risk minimization. This is the default procedure
for most machine learning methods (though its implementation for different models and massive datasets is
fairly complicated).

Activity 11.4. Suppose we have R-valued pairs ((X1, Y1), . . . , (Xn, Yn)) ∼iid P , and we’re using squared
error loss. Show that an estimator that achieves the smallest risk is

θ̂(x) = EP [Y |X = x] . (11.18)

Solution:

R(P, θ̂) = EP [L(Y, θ̂(X))] (11.19)

= EP [EP [L(Y, θ̂(X))|X]] (11.20)

= EP [EP [(Y − θ̂(X))2|X]] . (11.21)
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As in the case of finding the Bayes estimator of θ under squared error loss, if we can find θ̂ that minimizes
EP [(Y − θ̂(X))2|X = x] pointwise in x then we know that the overall risk is minimized by θ̂. For fixed
x, the minimizer is

a∗(x) = arg inf
a
EP [(Y − a)2|X = x] = EP [Y |X = x] , (11.22)

and therefore θ̂(x) = EP [Y |X = x] achieves the smallest risk.

Exercise 11.5. Suppose that Y ∈ {0, 1}, ((X1, Y1), . . . , (Xn, Yn)) ∼iid P , and we’re using 0-1 loss,

L(Y, θ̂(X)) = I{Y ̸= θ̂(X)} . (11.23)

Show that an estimator that achieves the smallest risk is

θ̂(x) =

{
1 if P (Y = 1|X = x) ≥ 1

2

0 o.w.
(11.24)

This is called the Bayes classifier.

Solution: This is similar to the previous activity. The conditional (on X) risk is

EP [I{Y ̸= θ̂(X)}|X] = P (Y ̸= θ̂(X)}|X) (11.25)

= P (Y = 1|X)I{θ̂(X) = 0}+ P (Y = 0|X)I{θ̂(X) = 1} (11.26)

= P (Y = 1|X)I{θ̂(X) = 0}+ (1− P (Y = 1|X))I{θ̂(X) = 1} . (11.27)

This is minimized by

θ̂(x) =

{
1 if P (Y = 1|X = x) ≥ 1− P (Y = 1|X = x)

0 P(Y = 1|X = x) < 1− P (Y = 1|X = x)
. (11.28)

For more on the statistical aspects of machine learning, see Hastie, Tibshirani, and Friedman [HTF09], which
is now somewhat outdated but still a great place to start. Wainwright [Wai19] has more advanced material.
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