
STAT 460/560 Class 8: Parametric frequentist inference

Ben Bloem-Reddy

Reading: Chapter 9, [Was04]; Chapters 4-5, [EH21].

This class is devoted to the core approaches from the classical theory and practice of statistical inference.
They all have to do with parametric models, and differ only in their approaches to carrying out the inference.
Although the differences are historically philosophical, today their distinction is largely practical, though the
philosophical aspects are still of primary importance when interpreting the results of the statistical analysis.

1. Parametric models

Recall that in a parametric model, the parameter is finite-dimensional. That is,

F = {Pθ : θ ∈ Θ ⊆ Rk} , (8.1)

where Θ is the parameter space. We saw some examples in Class 5.

Note that sometimes the parameter of interest is not one of the parameters in the model, but a function
of multiple parameters. For example, from the probabilities of infection for two diseases, p and q, we may
be interested in the log odds ratio, ln(p/(1− p))− ln(q/(1− q)).

2. Frequentist inference

In the frequentist interpretation of probability, all probability statements refer to limiting relative frequen-
cies, with these limiting frequencies then applied verbatim to particular realizations of the events to which
they refer. For example, if Xi is the outcome of a coin flip (heads/tails), then the limiting frequency

p = lim
n→∞

1

n

n∑
i=1

I{Xi is heads} (8.2)

is applied to a single coin flip variable X. We won’t take up any philosophical arguments here, but just point
out that the move of “limiting frequency property” to “distributional property of a particular realization”
makes the entire pursuit of frequentist inference possible. In particular, it allows one to estimate distributional
quantities from a single sample of data.

Note also that the frequentist approach implies that parameters of the underlying probability distributions
are fixed and unknown, not subject to randomness, and therefore no probability statements can be made
about them. As a consequence, frequentist statistical procedures should be designed to have well-defined
long-run frequency properties, in the sense that as the sample size grows, any probabilistic statements about
the procedure should become approximately true in the long-run frequency sense. Confidence intervals are
the most obvious example.

Efron and Hastie [EH21, Ch. 2] offer the useful working definition of frequentist statistics: “the probabilistic
properties of a procedure of interest are derived and then applied verbatim to the procedure’s output for
the observed data.” They point out that this requires calculating probabilistic properties of the procedure
under the unknown distribution. In practice, various methods are used to get around the problem. Plug-in
estimators, the delta method (and other Taylor series-based approximations), and bootstrapping are three
methods that we’ve already seen. Parametric models are another approach, which sometimes allow things to
be computed in closed form, and other times lead to relatively simple ways to implement the other methods.
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3. Maximum likelihood estimation

Let X1, . . . , Xn be iid with PDF/PMF f(x; θ), where θ ∈ Θ ⊆ Rk. The likelihood function is

Ln(θ) =

n∏
i=1

f(Xi; θ) , (8.3)

and the log-likelihood function is ℓn(θ) = lnLn(θ). This is the joint PMF/PDF of the data, viewed as a
function of the parameter. That is, Ln : Θ→ [0,∞).

The maximum likelihood estimator (MLE), denoted θ̂n, is the value of θ that maximizes Ln(θ). Note
that since ln is a strictly increasing function, the maximum of Ln occurs at the same place as the maximum
of the log-likelihood, ℓn. Often, ℓn is easier to work with (analytically and numerically).

In many cases, the maximum can be found by taking the gradient of ℓn with respect to θ, setting the resulting
expressions to zero, and solving that system of equations. Just be sure to check the second derivatives
(Hessian matrix) to confirm that you’ve found a maximum rather than a minimum.

Exercise 8.1. Let X1, . . . , Xn ∼iid N (µ, σ2). Find the MLE of θ = (µ, σ).

Sometimes we can’t solve the problem analytically.

Exercise 8.2. Let X1, . . . , Xn ∼iid Gamma(α, β), where β is the rate parameter so that the PDF is

f(x;α, β) =
βα

Γ(α)
xα−1e−βx . (8.4)

Show that the MLE (α̂, β̂) solves

β̂ =
α̂

X̄n
and ln α̂− ψ(α̂) = ln X̄n −

1

n

n∑
i=1

lnxi , (8.5)

where ψ(α) = d
dα ln Γ(α) is the digamma function.

In such cases, how do we find the MLE in practice? Numerical optimization. See the section at the end of
these notes (and STAT 535C) for some details.

We’ll focus here on some theoretical aspects of ML estimators. These properties are a major reason that the
use of MLEs is so widespread.

4. Consistency

We would like to show that if we maximize the likelihood, then as n → ∞, θ̂n
p−→ θ∗, where θ∗ is the true

parameter value. This is a little more involved than proving the consistency of an estimator that is the
sample average of some function (though in many cases, the MLE is a sample average).

The proof relies on the Kullbeck–Leibler (KL) divergence between two PDFs f and g,

D(f, g) =

∫
f(x) ln

(
f(x)

g(x)

)
dx . (8.6)

This is non-negative, and D(f, g) = 0 if and only if f = g (up to null sets of F ). For any two parameters
θ, θ′ ∈ Θ, we write D(θ, θ′) = D(f(x; θ), f(x; θ′)).

A model F is identifiable if θ ̸= θ′ implies that D(θ, θ′) > 0, i.e., the two parameters correspond to different
distributions in F . We will assume that the model is identifiable.
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Maximizing ℓn(θ) is equivalent to maximizing

Mn(θ) =
1

n

n∑
i=1

ln
f(Xi; θ)

f(Xi; θ∗)
. (8.7)

Since θ∗ is the true parameter value, Mn(θ)
p−→ −D(θ∗, θ) =:M(θ) for each θ ∈ Θ (pointwise). This is not

quite enough, however.

Here’s the basic idea. We want to show that M(θ̂n)
p−→ M(θ∗), so that if M can be used to essentially

separate points in Θ near θ∗, then the convergence of M can be used to induce convergence of θ̂n.

Formally, we assume that for every ϵ > 0,

sup
θ : ∥θ−θ∗∥≥ϵ

M(θ) < M(θ∗) . (8.8)

Then

P(∥θ̂n − θ∗∥ ≥ ϵ) ≤ P(M(θ̂n) < M(θ∗)− δ) . (8.9)

If M(θ̂n)
p−→M(θ∗) then the right-hand term goes to zero. We still need to show M(θ̂)

p−→M(θ∗).

Activity 8.1. Assume that supθ |Mn(θ)−M(θ)| p−→ 0. Show that M(θ̂)
p−→M(θ∗).

Theorem 8.1. Suppose that supθ |Mn(θ)−M(θ)| p−→ 0, and that (8.8) holds. Then θ̂n
p−→ θ∗ as n→∞.

5. Equivariance

Suppose we’re interested in some function of the parameter, say τ = g(θ). Then it turns out that τ̂n = g(θ̂n).
This is easy to prove if g is one-to-one. If it is not, then we can define the induced likelihood as

L∗
n(τ) = sup

θ : g(θ)=τ

Ln(θ) . (8.10)

Theorem 8.2. Let τ = g(θ). Then τ̂n = g(θ̂n), where the likelihood as a function of τ is as defined in
(8.10).

6. Asymptotic normality and the delta method

The asymptotic properties of MLEs are characterized by the score function,

s(X; θ) = ∇θℓ(θ) , (8.11)

and the Fisher information matrix

[In(θ)]i,j = E
(
∂ℓn(θ)

∂θi

∂ℓn(θ)

∂θj

)
=∗ −E

(
∂2ℓn(θ)

∂θi∂θj

)
. (8.12)

The =∗ indicates that the equality is true only under certain conditions; namely that we can interchange
differentiation and integration (expectation). For the situations we encounter in this course, we can assume
that the condition is met.

Exercise 8.3. Prove that Eθ[s(X; θ)] = 0k, where 0k is a k-dimensional vector of zeros. (You can
assume that you can interchange differentiation with respect to θ and expectation.) Use this fact to
show that

[I(θ)]i,j = Cov(s(X; θi), s(X; θj)) . (8.13)
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Theorem 8.3. Under appropriate regularity conditions,1

In(θ̂n)1/2(θ̂n − θ)⇝ N (0, Ik) . (8.14)

The approximate covariance between components of θ̂n is Cov(θ̂in, θ̂
j
n) ≈ [In(θ̂n)−1]i,j.

The regularity conditions here are essentially the ones needed for the consistency of θ̂n, plus those that
allow us to interchange differentiation and expectation. See, for example, Schervish [Sch95, Thm. 7.63], for
sufficient regularity conditions.

We’ll look at the proof of this for Θ ⊆ R, just to keep the notation light. But the technique generalizes to
higher dimensional Θ.

Proof. Let ℓ′n denote the derivative of ℓn with respect to θ, ℓ′′n the second derivative, and so on. The basic
idea is to perform a Taylor expansion of ℓ′n(θ) around θ∗, and analyze as n→∞. In particular,

ℓ′n(θ) = ℓ′(θ∗) + (θ − θ∗)ℓ′′n(θ∗) + · · · , (8.15)

We’ll neglect the higher-order terms because, under the regularity conditions, the error from doing so becomes
negligible as n → ∞. (See Schervish [Sch95, Thm. 7.63].) Substituting θ̂n, noting that ℓ′n(θ̂n) = 0, and
rearranging yields

√
n(θ̂n − θ∗) = −

ℓ′n(θ∗)/
√
n

ℓ′′n(θ∗)/n
. (8.16)

We’ll finish the proof as activities.

Activity 8.2. Show that the numerator of (8.16) converges in distribution as

−ℓ
′
n(θ∗)/

√
n

ℓ′′n(θ∗)/n
⇝ N (0, 1/I(θ∗)) .

Activity 8.3. Assume that I(θ) is a continuous function of θ. Argue that I(θ̂n)
p−→ I(θ∗), and therefore

that the conclusion of the theorem holds.

For differentiable functions of the parameter τ = g(θ), the delta method can be used to establish an asymp-
totic normality result for

√
n(τ̂n − τ∗).

1We’ll look at these in more detail later in the term. For now, existence of second derivatives, continuity of the Fisher
information, and the assumptions needed for consistency are sufficient.
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7. Numerical optimization: a primer (optional)

When we have an optimization problem such as

max
α>0,β>0

ℓn(α, β) (8.17)

that we can’t solve analytically, we can rely on any number of numerical/algorithmic optimization techniques.
We’ll just touch the surface here; there are entire courses on optimization (focused on numerical methods) and
much of modern statistics and machine learning would be impossible without good numerical optimization
methods.

A large subclass of numerical optimization methods are gradient-based. The basic idea is as follows. Suppose
our problem is to maximize some function f(θ) with respect to θ ∈ Rk, and that f has at least one derivative.
That is,

θ∗ = argmax
θ

f(θ) = argmin
θ
−f(θ) . (8.18)

By using only “local information” about f (e.g., calls to f , ∇f , ∇2f , etc., at a particular value), we can find
minimum of −f (and therefore a maximum of f) by iteratively following the negative gradient of f . That
is, we start with some guess θ0 and set

θt+1 ← θt − st∇θf(θt) , t = 0, 1, 2, . . . , (8.19)

until some termination criterion is met, e.g., |θt+1 − θt| ≤ ϵ, or ∥∇θf(θt)∥ ≤ ϵ. In the update (8.19), st is a
step size (also called a learning rate in some areas) that can make the optimization method more efficient,
stable, etc.

The gradient-based update above is a first-order method, because it uses only the first-order derivative of
f . It can be converted into a second-order method by setting st as the inverse of the Hessian matrix,

st = [∇2
θf(θt)]

−1 , (8.20)

which yields the Newton–Raphson method (also known as Newton’s method). This uses the curvature
(encoded by the inverse Hessian) to adjust the direction and magnitude of the step indicated by the gradient.
As a rule of thumb, second-order methods converge in fewer iterations than first-order methods, but are
computationally more expensive. For parametric models with parameter spaces of relatively small dimension,
Newton–Raphson is the default optimization method. In many cases, the gradient and Hessian matrix can be
derived analytically, allowing for easy numerical optimization. For a model with a large number of parameters
(e.g., a deep neural network), inverting the Hessian matrix is not feasible (and the number of observations
is so large that evaluating every term of the log-likelihood is also not feasible), and other methods (e.g.,
first-order methods, stochastic optimization, etc.) are used.

Exercise 8.4. Let f(θ) = aθ2 + bθ + c, for a > 0 and b, c, θ ∈ R. Show that for arbitrary θ0, the
Newton–Raphson method converges to the minimum of f in one iteration.

Example 8.1. The following is example code for maximizing the Gamma log-likelihood from Exer-
cise 8.2.

### numerical maximization of Gamma likelihood

### note that log-likelihood and gradient/Hessian have been multiplied by 1/n

loglik <- function(theta, x){

## function computes log-likelihood; theta = (alpha,beta)

n <- length(x)

alpha <- theta[1]

beta <- theta[2]
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ll <- alpha*log(beta) - lgamma(alpha) - beta*sum(x)/n + (alpha - 1)*sum(log(x))/n

return(ll)

}

loglik_grad <- function(theta, x){

## function computes gradient of log-likelihood; theta = (alpha,beta)

n <- length(x)

alpha <- theta[1]

beta <- theta[2]

# derivative w.r.t. alpha

gr_a <- log(beta) - digamma(alpha) + sum(log(x))/n

# derivative w.r.t. beta

gr_b <- alpha/beta - mean(x)

return(c(gr_a,gr_b))

}

loglik_hess <- function(theta, x){

## function computes Hessian of log-likelihood; theta = (alpha,beta)

n <- length(x)

alpha <- theta[1]

beta <- theta[2]

hess_aa <- -trigamma(alpha)

hess_bb <- -alpha/beta^2

hess_ab <- 1/beta

return(matrix(c(hess_aa,hess_ab,hess_ab,hess_bb), nrow = 2, ncol = 2))

}

f_optim <- function(theta,x){

## wrapper function for loglik, gradient, hessian

## minus signs are because we’ll use a minimization function

ll <- -loglik(theta,x)

attr(ll, "gradient") <- -loglik_grad(theta,x)

attr(ll, "hessian") <- -loglik_hess(theta,x)

return(ll)

}

### simulate

set.seed(560)

n <- 50 # try also with 500, 5000

alpha_star <- 3

beta_star <- 4

X <- rgamma(n, shape = alpha_star, rate = beta_star)

# initialize with method of moments (try other initializations)

azero <- mean(X)^2/(mean(X^2) - mean(X)^2)

bzero <- azero/mean(X)

## print.level argument below is just to see iterates
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theta_hat <- nlm(f_optim, p = c(azero, bzero), x = X,

hessian = TRUE, print.level = 2)

theta_hat$estimate ## print values at numerical optimum

## both eigenvalues should be positive for this to be a mimimum of -f

eigen(theta_hat$hessian)

Exercise 8.5. Derive the initial values of α, β used above using method of moments.

Exercise 8.6. Use Exercise 8.2 to find the ML estimates by numerically optimizing only α.

Exercise 8.7. Implement the Newton–Raphson method to find the MLE for θ = (µ, σ) forX1, . . . , Xn ∼iid

N (µ, σ2), and compare to your answer to Exercise 8.1.
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