STAT 460/560 Class 8: Consistency of the bootstrap

Ben Bloem-Reddy

Reading: Chapter 23.1-23.2, [van98|.

Today we’ll establish the consistency of bootstrap methods, and in particular, bootstrap confidence intervals.
Extending the empirical CDF to more general settings, for n i.i.d. observations X1, ..., X,, taking values in
R?, P, is the empirical measure, defined as

1 n
P, (A) = EZ%(A) , ACR?.

i=1
As with the empirical CDF, sampling from B, is just sampling with replacement from Xy,..., X,,.

The asymptotics today may seem a little strange, because many of the statements will be something like
“Sn ~ T, conditionally almost surely.” What this means is that for P-almost every sequence X1, Xo, ...,
the conditional distribution of S, given Xj,..., X, converges to the distribution of 7. Just think of this
as the sequence of conditional distributions converging, but keep in mind that a conditional distribution is
a random distribution (it is a function of the random variables on which it conditions), which makes the
“almost surely” necessary.

Before we get to the bootstrap, we need an intermediate result, the proof of which can be found as Lemma
21.2 in [van98]. Recall that if F' is a CDF, the quantile function, denoted F~!, is the generalized inverse
of F,

F~Y(p) = inf{z: F(z) >p}.

If F is continuous and strictly increasing then this is just the usual inverse. The generalized part comes in
when F' has jumps, flat spots, etc.

Lemma 8.1 (Lemma 21.2, [van98]). Let F,, be any sequence of CDFs and F another CDF. F,,*(p) — F~1(p)
at every p where F~1 is continuous if and only if F,(x) — F(x) at every x where F is continuous.

Note that this kind of convergence is equivalent to X,, ~ X if F}, is the CDF of X, and F' is the CDF of
X. For that reason, we write F;, ~» F' (but this is a convenient overloading of notation).

1. Consistency of interval from convergence of estimator

Recall that the bootstrap conditions on an estimate b, of P (formed from the sample), and generates a
bootstrap sample X7{,...,X. In practice, we’ll simulate the bootstrap sample many times to estimate
things like the distribution of (6% — 6,,)/6%. For the purposes of analysis, we’ll assume that we have access

to the actual bootstrap distribution (i.e., what we would obtain in the limit B — 00).

To form the bootstrap interval, we will estimate quantiles of (én —0) /0 by quantiles of the bootstrap quantity
(0% — 0,,)/0). In particular, let

*
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E,(z):=P (9"_9" <zl Pn> , (8.1)



with én,pa = inf{a: Fn(x) > 1 — a}. This is a random number, where the randomness comes from
conditioning on P,. If T' is a random variable with CDF F, we say that (0;, — 0,,)/6,, ~» T conditionally on
Xl, X27 .. df Fn ~~+ F' conditioned on Xl,Xg, [P

Using the estimated quantile, we can form an approximate interval as
fn(aa B) = [Gn - fn,ﬂ&na 9n - én,l—aa'n] . (82)

A sufficient condition for consistency of the bootstrap intervals is that the bootstrap quantities converge in
distribution to the same place as the non-bootstrap quantities.

Theorem 8.2. Suppose that (6, — 0)/6, ~ T, and that for almost every sequence X1, Xs,...,, (0% —
0,) /0% ~~ T conditionally on X1,Xs,..., for a random variable T with a continuous CDF. Then

P(In(a,8) »1—a—8. (8.3)

Before going through the proof, we have made a couple of assumptions that are not strictly necessary, but
that simplify the proof. The first is that we assume that F' is a continuous function. This rules out having
to deal with CDFs that can differ on a null set of discontinuities (a headache that doesn’t offer additional
insight). The second is that we assume that convergence in distribution (8% — 6,,)/0% ~» T holds almost
surely, conditionally on X7, X5,.... This can be weakened to convergence in probability by arguing along
subsequences but again, that doesn’t offer additional insight.

Proof. By assumption, F}, ~» F, where F is the CDF of T. By Lemma 8.1, F;}(p) — F~'(p) at every

continuity point of F~1. Choose o so that 1 — « is such a continuity point. Then &, 1o = F;1(1 — )
converges almost surely to F~!(1 — «). Hence, by Slutsky’s lemma,

(én - 0)/[7n - gn,l—a ~ T — F71(1 - a) .
Therefore,
0, —0

On

P(0>0,—646n1-0) =P ( < 5n71a> —+PT<F'1-a)=1-a.

This must hold for all but at most countably many values of a. Both the LHS and the RHS of the previous
math display are monotone functions of a and the RHS is continuous in «, the convergence must hold for
every a. O

With this in hand, showing that bootstrap confidence intervals are consistent amounts to showing that
our statistic of interest converges in distribution, and that the bootstrap version of our statistic of interest
converges in distribution to the same place.

Theorem 8.3. Let X1, Xo,... be i.i.d. random variables in R with mean p and variance o2. Then condi-

tionally on X1, Xs, ..., for almost every sequence X1, Xo, ...,

Vi(XE — X)) ~ N(0,02) .

Activity 8.1. Show that

* v * v » 1 . v
E[Xi‘Pn]:Xna and E[(Xz *Xn)2|Pn]:EZXi27XTZL'
=1

Solution: Conditioning on P, is the same as conditioning on X1,..., X, but ignoring the order of
the observations. Since, conditioned on P,, X is generated by sampling uniformly at random from



X1,...,X,, there is the general formula
*\ | P 1 -
E[f(X)|P] =~ f(Xi) .
i=1

Another way to view this is that P, is a discrete probability measure that puts probability 1 /m at each
of X1,...,X,. Applying the general formula to E[X}|P,] and to E[(X; — X,,)?|P,] yields the stated
results.

By the (strong) law of large numbers, these converge almost surely to p and to o2, respectively. In other
words, for P-almost every sequence X1, Xa,..., X,, — p and similarly for the variance.

Showing the asymptotic normality of X requires a strong version of the CLT that is suitable for the case in
which the X}’s are sampled from a different distribution for each n. In particular, the Lindeberg-Feller CLT
applies to triangular arrays, and although van der Vaart [van98, Prop. 2.27] calls it “the simplest extension
of the classical central limit theorem,” it is extremely useful. An infinite triangular array is formed by taking
a vector Y,, of length k,,, putting it in the n-th row, and appending infinitely many zeros. In the theorem,
the entries in each row are assumed to be independent, but there may be dependence between rows. It can
also be extended to the situation in which each entry of the array is actually a vector of fixed length [see
van98, Prop. 2.27].

Theorem 8.4 (Lindeberg—Feller CLT). For each n > 1, let (Yn1,...,Ynk,) be a vector of independent
random variables with finite variances and for every e > 0,

kn
> B[l P Yol > €}] -0 asn—oo.

i=1
kp
Moreover, assume that y_;", Var(Y, ;) — o*. Then as n — oo,

kn

> (Yo — E[Yai]) ~ N(0,0%) .

i=1
Back to our bootstrap analysis, /nX; = > " | %X;)i =>" .Y, where we have defined Y, ; = ﬁ i
and X ; is the i-th bootstrap sample from P,. We just need to check the conditions of the Lindeberg—Feller
CLT. To that end, fix arbitrary € > 0, and consider

n n
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SE (Wil K1Yl > | 2] = 3B | LUK PG > vie) | 2,
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i=1
for M < y/ne, and where the convergence follows from the strong law of large numbers.

Now, we assumed that Var[X;] = 02, which implies that

Jim B PT{ X il| > M} =0 (8.4)
00

(See the optional section on integrability below for details.) Hence, for each i > 0, there is some M, such
that

Bl X P Xl

>M"7}]<777



which implies that for n large enough,

S B ¥l P Yaill > €} | Pa] <,
i=1
for P-almost every sequence X, Xs,.... That shows that the first condition of the Lindeberg—Feller CLT is

satisfied for P-almost every sequence.

Finally, using the activity above and the strong law of large numbers,

k n

" 1 -
Var(Yy,:) = - Y E[(X - X,)? P,

;:1 ar(Yy,i) ”;:1 (X3 )7 | ]

1 n
= X7 X7 2500
n

i=1

Hence, the conclusion of the Lindeberg—Feller CLT applied here is that

kn

Z(Yn,i — E[Y,, | pn]) =Vn(X;, - X;,) ~ N(0»02)

i=1
holds for P-almost every sequence X1, Xo,. ...
Theorem 23.5 in [van98] extends this substantially by proving the validity of the delta method for the
bootstrap.
Integrability (optional)

A random variable X is integrable if E[|| X||] < oo. An equivalent condition [see, e.g., Cinll, Lemma 3.10] is
that

Jim E[LXI{[|X]| > 0}] = 0.
—00

Applied to the situation above, (8.4) holds because E[X?] = u? + 02 < oo (i.e., it is integrable).
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