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Reading: Chapter 8, [Was04]; Chapter 10-11, [EH21].

1. Bootstrap at a high level

The primary motivation for bootstrap methods was—and still is—to estimate uncertainty for estimators
that do not admit simple expressions for variance. To illustrate, suppose that we have a statistic Tn =
g(X1, . . . , Xn), where the data have unknown distribution F . If Tn is the sample mean X̄n then we have a
simple mathematical expression for VarF (Tn) (the variance under F ), and it’s straightforward to estimate—
usually with VarF̂n

(Tn). On the other hand, if Tn is the sample median, that is not the case.

At a high level, the bootstrap has two steps:

1. Estimate VarF (Tn) with VarF̂n
(Tn).

2. Use simulation to approximate VarF̂n
(Tn).

Sometimes the second step is unnecessary, i.e., when we can derive VarF̂n
(Tn) in closed form.

2. Simulation and Monte Carlo integration

Let Y be a random variable with distribution G and f some function such that E(|f(Y )|) < ∞. The Weak
Law of Large Numbers (LLN) tells us that if Y1, . . . , YB ∼iid G, then as B → ∞,

1

B

B∑
i=1

f(Yi)
p−→

∫
f(y)dG(y) = E(f(Y )) . (7.1)

The basic idea behind Monte Carlo integration is that one can get numerical estimates of integrals by
sampling and averaging.

Here’s an example. The code below estimates

I1 =

∫ ∞

−∞
xϕ(x)dx

and

I2 =

∫ ∞

−∞
xex

2−x4

ϕ(x)dx ,

where ϕ is the standard normal PDF. (Quick! What should these be?)

library(ggplot2)

set.seed(111)

B <- 50000

Y <- rnorm(B, mean = 0, sd = 1)

# define custom function

f <- function(x){

1



return(x*exp(x^2 - x^4))

}

I1 <- sum(Y)/B

I2 <- sum(f(Y))/B

# report estimates

I1 # -0.009006043

I2 # -0.0003849936

Exercise 7.1. Let Y = X3, where X ∼ N (0, 1). Use B = 10000 samples to estimate Var(Y ).

3. Bootstrap variance estimation

We want to estimate VarF (Tn). If we knew F , we could just use the ideas from the previous section by
simulating datasets X∗

1,b, . . . , X
∗
n,b, b = 1, . . . , B. But we don’t know F . So what can we do?

Bootstrapping techniques sample pseudo-datasets from an estimate of F . The most obvious estimate is the
eCDF F̂n. This is known as the nonparametric bootstrap. The idea here is that if F̂n is close to F , then
VarF̂n

(Tn) will be close to VarF (Tn). What does sampling from F̂n look like? Recall that F̂n is the CDF of

the distribution that assigns mass 1/n to each observed value. So sampling from F̂n is just sampling with
replacement from X1, . . . , Xn. We denote such a bootstrap sample by X∗

1 , . . . , X
∗
n, and T ∗

n = T (X∗
1 , . . . , X

∗
n).

We can use the bootstrap variance as an estimator for VarF (Tn),

vboot =
1

B

B∑
b=1

(
T ∗
n,b − T̄ ∗

n

)2
, with T̄ ∗

n =
1

B

B∑
r=1

T ∗
n,r . (7.2)

Here’s an example: a bootstrap estimate of the variance of the correlation coefficient.

#####

library(MASS) # for sampling from MVN

set.seed(101)

# sample size

n <- 100

# generate "data"

Sig.cov <- matrix(c(2,1,1,3), nrow=2, ncol=2)

X <- mvrnorm(n, mu = c(0,0), Sigma = Sig.cov) # this is a nx2 matrix

rho.XY.hat <- cor(X)[1,2]

# bootstrap

B <- 10000

idx <- sample.int(n, size = n*B, replace = TRUE) # get all of the bootstrap indices in one go

bs.idx <- matrix(idx, nrow = B, ncol = n) # convert the indices in a B x n matrix

bs.rho.XY.hat <- rep(0, times = B)

for (b in 1:B){

Xstar <- X[bs.idx[b,],]

bs.rho.XY.hat[b] <- cor(Xstar)[1,2]

}

# estimate variance

se.bs.rho <- sqrt(var(bs.rho.XY.hat)*(B-1)/B) # 0.08763904
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Exercise 7.2. Download the Old Faithful Geyser Data (https://www.stat.cmu.edu/~larry/all-of-statistics/
=data/faithful.dat) and use B = 1000 for a bootstrap estimate of the variance of the sample median
waiting time and eruption time (separately). (If you’re working in R, you can just use the faithful

dataset.)

Also get a bootstrap estimate of the variance of the sample mean waiting time, and compare it to the
usual estimator,

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)
2 . (7.3)

There are two assumptions/conditions needed here in order for bootstrapping to work well. (We’ll talk about
theory in detail at the end of the term.) Firstly, we need F̂n to be a decent estimate of F . When n is large
this should be true (recall the uniform convergence bound from last class); for small n we should proceed
with caution. Secondly, there’s an assumption smuggled in that the map F 7→ VarF (Tn) is continuous so
that if F̂n is a good estimate of F then VarF̂n

(Tn) is a good estimate of VarF (Tn).

4. Bootstrap confidence intervals

There are three simple ways to use bootstrap methods to construct approximate 1− α confidence intervals.

1. The Normal Interval: The simplest is

Tn ± zα/2
√
vboot . (7.4)

Although this is the simplest, it’s best to avoid unless one has good reason to think that the distribution
of Tn is normal.

2. Pivotal Interval: Let θ = T (F ) and θ̂n = T (F̂n). Define the pivot Rn = θ̂n − θ. If we knew the
CDF of the pivot,

H(r) = P(Rn ≤ r) , (7.5)

then we could compute an exact 1− α confidence interval as C∗
n = (a, b), where

a = θ̂n −H−1(1− α/2) and b = θ̂n −H−1(α/2) . (7.6)

We don’t actually know H, but we can estimate it via bootstrapping. Let R∗
n,b = θ̂∗n,b − θ̂n, where θ̂∗n,b

is the b-th bootstrap replicate of θ̂n. Then

Ĥ(r) =
1

B

B∑
b=1

I(R∗
n,b ≤ r) . (7.7)

Note that because R∗
n,b = θ̂∗n,b − θ̂n, the q-th quantile of (R∗

n,1, . . . , R
∗
n,B), denoted r∗q , is equal to

θ∗q − θ̂n, where θ∗q is the q-th quantile of (θ̂∗n,1, . . . , θ̂
∗
n,B).

Then an approximate 1− α confidence interval is Ĉn = (â, b̂), where

â = θ̂n − r∗1−α/2 = 2θ̂n − θ∗1−α/2 (7.8)

b̂ = θ̂n − r∗α/2 = 2θ̂n − θ∗α/2 . (7.9)

3. Percentile interval: We can just approximate the confidence interval with the bootstrap distribution,
so that

Cn = (θ∗α/2, θ
∗
1−α/2) . (7.10)
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Theorem 7.1. Under weak conditions1 on T (F ), the pivotal interval is asymptotically level 1−α. That is,
as n → ∞,

PF (T (F ) ∈ Ĉn) → 1− α . (7.11)

Exercise 7.3. Calculate the three different confidence intervals for the sample median of the waiting
time from the Old Faithful Geyser dataset. How do they compare?
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1Details deferred until much later in the term.

4


