
STAT 460/560 Class 6: Estimating the CDF and Functionals of the
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Reading: Chapter 7, [Was04]; Chapter 2.1-2.3, [Was06].

1. CDF, empirical CDF

Let X1, . . . , Xn be an iid random sample of variables taking values in R, with unknown CDF F . Today’s
class focuses on estimating the CDF from the sample. Recall that the CDF is

F (t) = P(X ≤ t) =

∫ t

−∞
dF (x) =

{∑
xj≤t f(xj) if X is discrete;∫ t

−∞ f(x)dx if X is continuous.
(6.1)

The empirical CDF (eCDF) is exactly what it sounds like:

F̂n(t) =
1

n

n∑
i=1

I(Xi ≤ t) . (6.2)

This is just the CDF that puts mass 1/n at each data point in the sample. Figure 1 shows two examples.
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Figure 1: The empirical CDF of n ∈ {10, 1000} samples from the uniform distribution (left) and standard
normal distribution (right). Dashed lines are the CDF of the underlying distribution.

It suggests that as n → ∞, the eCDF converges pointwise. Indeed, this is the case.

Theorem 6.1. At any fixed value of x ∈ R,

E(F̂n(x)) = F (x) Var(F̂n(x)) =
1

n
F (x)(1− F (x)) (6.3)

mseF (F̂n(x)) =
1

n
F (x)(1− F (x)) → 0 F̂n(x)

p−→ F (x) . (6.4)
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Activity 6.1. Prove Theorem 6.1.

Exercise 6.1. Use the CLT to find the limiting distribution for F̂n(x) for fixed x.

Pointwise convergence says that the eCDF will converge at each point x, in the sense that for each ϵ > 0,
there is some N such that for all n > N ,

P(|F̂n(x)− F (x)| ≥ ϵ) ≤ ϵ . (6.5)

Pointwise convergence is nice, but may not be enough in some cases. For different x’s, N may be very
different. Since we’re estimating a function we’d like some guarantee that the entire function is converging
more or less together. Uniform convergence expresses that: for each ϵ > 0, there is some N such that for
all n > N ,

P
(
sup
x∈R

|F̂n(x)− F (x)| ≥ ϵ

)
≤ ϵ . (6.6)

In short, supx∈R |F̂n(x)− F (x)| p−→ 0. The Glivenko–Cantelli theorem establishes something even stronger.

Theorem 6.2 (Glivenko–Cantelli). Let X1, . . . , Xn ∼iid F . Then

sup
x∈R

|F̂n(x)− F (x)| a.s.−→ 0 . (6.7)

The proof is beyond the scope of this course. See, for example, Wainwright [Wai19, Ch. 4].

A related result can be used to obtain an approximate confidence band.

Theorem 6.3 (Dvoretzky–Kiefer–Wolfowitz (DKW)). Let X1, . . . , Xn ∼iid F . Then for any ϵ > 0,

P
(
sup
x∈R

|F̂n(x)− F (x)|
)

≤ 2e−2nϵ2 . (6.8)

Since this is uniform over x ∈ R, we can invert it for a confidence band: for α ∈ (0, 1), let

ϵn =

√
1

2n
log

(
2

α

)
, (6.9)

so that with

L(x) = max{F̂n(x)− ϵn, 0} U(x) = min{F̂n(x) + ϵn, 1} , (6.10)

P(L(x) ≤ F (x) ≤ U(x) for all x) ≥ 1− α.

Note that this is barely scratching the surface; the mathematical techniques of empirical process theory can
be used to say much more.

2. Functionals of the CDF

It turns out that many common estimands can be expressed as a functional of the CDF, i.e., some function
of the CDF, denoted T (F ). The plug-in estimator of θ = T (F ) is

θ̂n = T (F̂n) . (6.11)

A linear functional of F is any functional that can be written as T (F ) =
∫
r(x)dF (x), for some function

r.

2



Note that

∥F −G∥∞ := sup
x∈R

|F (x)−G(x)| (6.12)

is a norm on the set of CDFs (called the sup-norm), and one way to show that an estimator of a functional
is consistent is to show that the functional is continuous with respect to the sup-norm and then appeal to
Glivenko–Cantelli. We won’t pursue that here, but see [Wai19, Ch. 4] for more if you’re interested.

Plug-in estimators of linear functionals have especially nice properties because if T is linear then

T (F̂n(x)) =

∫
r(x)dF̂n(x) =

1

n

n∑
i=1

r(Xi) . (6.13)

In this case, the statistical properties of the estimator don’t require any sophisticated techniques.

In other cases, for example, the quantile function, it’s not clear how to do even basic things like estimate
se(F̂n(x)). Wasserman [Was06, Ch. 2.3] has some techniques for approximating this with a nonparametric
version of the delta method. Often, those methods are not practically very useful, but they are the starting
point of theoretical analysis of nonparametric methods. We’ll just touch the surface to get an idea of the
big picture.

3. Functional delta method at a high level

The main difficulty here is that we’re working in a set of functions, which is infinite dimensional and doesn’t
necessarily have the familiar structure of Rd, so basic things like taking derivatives (for, e.g., a delta method)
aren’t immediately clear. The way to generalize the derivative (precisely, the directional derivative) is via
the Gâteaux derviative of a functional T at the CDF F , in the direction of the CDF G,

LF (G) = lim
ϵ→0

T ((1− ϵ)F + ϵG)− T (F )

ϵ
. (6.14)

This represents an “infinitesimal step” from T (F ) towards T (G). If G = δx, i.e., the point mass at x, then
LF (x) := LF (δx) is called the influence function (IF). (The name comes from the field of robust statistics.)
It represents the change in T (F ) when an infinitesimal amount ϵ of mass is subtracted from F , and replaced
with a point mass at x. We can estimate the IF with the empirical IF (dropping the subscript F ),

L̂(x) = lim
ϵ→0

T ((1− ϵ)F̂n + ϵδx)− T (F̂n)

ϵ
. (6.15)

If T is a linear functional, so that T (F ) =
∫
a(x)dF (x), then the following identities follow from the

definitions:

1. LF (x) = a(x)− T (F ) and L̂(x) = a(x)− T (F̂n).

2. For any G,

LF (G) = T (G)− T (F ) , (6.16)

and

T (G) = T (F ) +

∫
LF (x)dG(x) . (6.17)

3.
∫
LF (x)dF (x) = 0.

Activity 6.2. Prove the three identities above.
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Now, using (6.17) with G = F̂n yields

T (F̂n)− T (F ) =
1

n

∑
i=1

LF (Xi) . (6.18)

From
∫
LF (x)dF (x) = 0, this converges in probability to 0. Moreover, we can apply the CLT to the

right-hand side to get

√
n(T (F̂n)− T (F ))⇝ N (0, τ2) , (6.19)

as long as

τ2 =

∫
L2
F (x)dF (x) =

∫
(a(x)− T (F ))2dF (x) < ∞ . (6.20)

We can estimate this quantity by

τ̂2 =
1

n

n∑
i=1

L̂2(Xi) =
1

n

n∑
i=1

(a(Xi)− T (F̂n))
2 . (6.21)

It can be shown that τ̂2
p−→ τ2. Moreover, if se =

√
Var(T (F̂n)) and ŝe = τ̂ /

√
n then ŝe/se

p−→ 1. So we

also have

√
n
(T (F̂n)− T (F ))

τ̂
⇝ N (0, 1) . (6.22)

These arguments extend beyond linear functionals, to so-called Hadamard differentiable functionals, which
are “approximately linear” in a small neighborhood around each F . See van der Vaart [van98, Ch. 20] for
all the details, and the Appendix of Wasserman [Was06, Ch. 2] for a few of the details.

Exercise 6.2. Go through the steps carefully, giving a rigorous proof of each claim.
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