
STAT 460/560 Class 5:

Delta Method

&

the big picture

Ben Bloem-Reddy

Reading: Chapter 3.1, 3.4, [van98]. Supplement: Chapter 5, [Was04].

1. Delta Method, intuitively

Suppose we have an estimator Tn for θ, but we’re interested in some function ϕ(θ). For example, we might
have a sample of n patients who are tested for a particular medical condition. Let X1, . . . , Xn denote the
outcome of those tests, modeled as iid Bern(p), p ∈ (0, 1), random variables. We know by the CLT that√
n(X̄n − p)⇝ N (0, p(1− p)). But maybe we’re interested in the log-odds,

ϕ(p) := ln
p

1− p
.

A natural estimator of this is ϕ(X̄n). How does ϕ(X̄n)− ϕ(p) behave for large n?

The continuous mapping theorem tells us that since X̄n
p−→ p (how do we know this?) and ϕ(p) is continuous

for all p ∈ (0, 1), it is the case that ϕ(X̄n)
p−→ ϕ(p).

Great. But what about the limiting distribution? Informally, since ϕ is differentiable, it is reasonable to
expect that

√
n(ϕ(X̄n)− ϕ(p)) ≈ ϕ′(p)

√
n(X̄n − p) ∼ N (0, ϕ′(p)2p(1− p)) .

The intuition here is based on the linear approximation of ϕ in the vicinity of p: ϕ′(p)h ≈ ϕ(p + h) − ϕ(p)
for small ∥h∥. Since

√
n(X̄n − p) ⇝ Z (for normal random variable Z), then for large enough n we expect

that
√
n(ϕ(X̄n)− ϕ(p))⇝ ϕ′(p)Z. We will prove this in generality today.

2. Delta Method, rigorously

Consider a vector-valued statistic, Tn = (Tn,1, . . . , Tn,k), and a function ϕ : Rk → Rm, which we assume is
defined at least on a neighborhood of θ. The function ϕ is differentiable at θ ∈ Rk if there exists a linear
map (matrix) ϕ′

θ : Rk → Rm such that

ϕ(θ + h)− ϕ(θ) = ϕ′
θ(h) + o(∥h∥) , h → 0 .

In practice, this gets formed by the matrix (function)

ϕ′
θ =


∂ϕ1

∂x1
(θ) . . . ∂ϕ1

∂xk
(θ)

...
...

∂ϕm

∂x1
(θ) . . . ∂ϕm

∂xk
(θ)

 ,

so that the function h 7→ ϕ′
θ(h) is just matrix multiplication ϕ′

θh, with h ∈ Rk. If the dependence of ϕ′
θ on θ

is continuous then ϕ′
θ is said to be continuously differentiable.

Here’s the main result on the delta method.
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Theorem 5.1. Let ϕ : Rk → Rm be a map defined on a subset of Rk and differentiable at θ. Let Tn be
random vectors that take values in the domain of ϕ. If rn(Tn − θ)⇝ T for numbers rn → ∞, then:

(i) rn(ϕ(Tn)− ϕ(θ))⇝ ϕ′
θ(T ); and

(ii) rn(ϕ(Tn)− ϕ(θ))− ϕ′
θ(rn(Tn − θ))

p−→ 0.

The proof uses two results from Chapter 2 of [van98] that we skipped. The first is Prohorov’s theorem
(Theorem 2.4 in [van98]), which says in part that if Xn ⇝ X then the sequence Xn is bounded in probability,
i.e., Xn = Op(1). The second result is Lemma 2.12(i), which says the following. Suppose R is a function
such that R(0) = 0, that Xn takes values in the domain of R, and that Xn

p−→ 0. If R(h) = o(∥h∥p) as
h → 0 for some p > 0, then R(Xn) = op(∥Xn∥p).

We’ll also need the following lemma.

Lemma 5.2. If the sequence rnXn, for numbers rn → ∞, is bounded in probability, then Xn
p−→ 0.

Proof. Because rnXn is bounded in probability, for every ϵ > 0 there is some M such that

sup
n

P (rn∥Xn∥ > M) < ϵ

sup
n

P (∥Xn∥ > M/rn) < ϵ .

Since M is finite and rn → ∞, this implies that Xn
p−→ 0.

Proof of Theorem 5.1. Because rn(Tn − θ) converges in distribution, by Prohorov’s theorem it is bounded
in probability, i.e.,

rn∥Tn − θ∥ = OP (1) .

File this fact away for later. Moreover, by the lemma above, Tn − θ
p−→ 0.

Now define the remainder function

R(h) = ϕ(θ + h)− ϕ(θ)− ϕ′
θ(h) .

By the differentiability of ϕ, we have that R(h) = o(∥h∥) as h → 0. Since Tn − θ
p−→ 0, we have by Lemma

2.12(i) that

R(Tn − θ) = ϕ(Tn)− ϕ(θ)− ϕ′
θ(Tn − θ) = oP (∥Tn − θ∥) .

We can multiply by sides by rn, and using the oP -calculus rules (p. 13 in [van98]) along with the fact that
ϕ′
θ( • ) is linear, we get

rn(ϕ(Tn)− ϕ(θ))− ϕ′
θ(rn(Tn − θ)) = oP (rn∥Tn − θ∥) = rn∥Tn − θ∥oP (1) = OP (1)oP (1) = oP (1) .

That proves (ii).

Now, matrix multiplication is continuous, so by the continuous mapping theorem, ϕ′
θ(rn(Tn − θ))⇝ ϕ′

θ(T ).
We can apply Slutsky’s lemma to conclude that

rn(ϕ(Tn)− ϕ(θ)) = rn(ϕ(Tn)− ϕ(θ))− ϕ′
θ(rn(Tn − θ)) + ϕ′

θ(rn(Tn − θ))

⇝ 0 + ϕ′
θ(T ) = ϕ′

θ(T ) .

A common situation (illustrated in the next activity) is that
√
n(Tn − θ)

p−→ Nk(µ,Σ). Then the delta
method (and the above theorem) indicates that

√
n(ϕ(Tn)− ϕ(θ))⇝ Nm(ϕ′

θµ, ϕ
′
θΣ(ϕ

′
θ)

⊤) .
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Activity 5.1.

Suppose we have a random sample of n patients who are tested for a particular medical condition. Let
X1, . . . , Xn denote the outcome of those tests, modeled as iid Bern(p), p ∈ (0, 1), random variables.
Suppose that Y1, . . . , Yn ∼iid Bern(q), q > 0, are the outcome of tests for a different medical condition
from an independent sample of patients. Show the following:

1. As n → ∞,
√
n(ln(X̄n)− ln(p))⇝ N (0, (1− p)/p).

2. As n → ∞,
√
n(ln(X̄n/Ȳn)− ln(p/q))⇝ N (0, σ2), where σ2 = (1− p)/p+ (1− q)/q.

The big picture

Reading: Chapter 6, [Was04]; Chapter 1, [EH21].

The point of today’s class is to discuss the big picture of what statistical inference (and related ideas) is,
and how we construct models and algorithms to help us perform it. At a high level, the whole point of this
is to use observations (in the form of data) to infer or learn things about reality.1 That’s it. There are many
ways we might (and do) perform this task.

The statistics part comes in when we incorporate uncertainty and mathematics into the process, using
probability to specify a mathematical model of some aspect of reality. Wasserman oversimplifies this by
saying that statistical inference is “the process of using data to infer the distribution that generated the
data.” I would emphasize that the “distribution that generated the data” is itself an object in our model,
and inferring it is only useful if, through its relationship to reality, we are able to infer something from it
about reality. We’ll generally assume that is true, but I can’t stress this enough—the model matters.

3. Statistical models and estimation

A statistical model F is a set of probability distributions (or densities or conditional distributions). A
parametric model is a set F that can be parameterized by a finite-dimensional parameter. Abstractly,
this typically looks like

F = {Pθ : θ ∈ Θ ⊆ Rk} , (5.1)

where Θ is the parameter space. An example is the family of univariate normal PDFs with unknown mean
and variance parameters θ = (µ, σ2). Then Θ = R × (0,∞). If we are only interested in some components
of θ, the remaining parameters are called nuisance parameters. For example, if we are only interested in
µ, then σ2 is a nuisance parameter.

A nonparametric model is one that cannot be parameterized by a finite number of parameters. Often,
it will consist of a set of functions, such as FCDF = {all CDFs}. Another example is nonparametric density
estimations, where the model is the set of PDFs that are not “too wiggly,” FPDF ∩ FSOB, where

FSOB =

{
f :

∫
(f ′′(x))2dx < ∞

}
. (5.2)

A semiparametric model is one that has a parametric part (often the part we’re interested in) and a
nonparametric part (often a nuisance “parameter”).

Given a set of observations assumed to be sampled from some distribution in F , estimation is the process
of selecting one of the distributions F ∈ F . In many cases, we may only be interested in estimating some
property of F , which can be thought of as a function of F , T (F ). Some examples:

• The mean, T (F ) = E(X) =
∫
xdF (x).

• The median, T (F ) = F−1(1/2).

1This assumes that there is such a thing as reality and that it is external to each of us; we won’t go down this rabbit hole.
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4. Prediction

In some cases, we observe pairs (X1, Y1), . . . , (Xn, Yn), and wish to predict Yi from Xi. Here, X is called
the regressor or predictor (or feature or independent variable). Y is called the outcome or response
variable (or dependent variable). At the most general level, the idea is to model and infer

Pθ(Y | X) . (5.3)

It is common to model this with a regression model, which consists of a regression function r(x) =
E(Y |X = x), and a noise model. For example, an additive noise model is that

Y = r(X) + ϵ , (5.4)

where ϵ⊥⊥X and E(ϵ) = 0. Note that any regression model can be written in the form (5.4), but that ϵ in
general will not be independent from X.

5. A word on notation

If θ parameterizes our statistical model, then Pθ and Eθ denote the corresponding probability distribution
and expectation with respect to that distribution, respectively. Similarly for the variance, Vθ.

6. Basic concepts

Point estimation refers to a single “best guess” of the thing we’re trying to estimate. It does not attempt
to quantify uncertainty about the accuracy of that guess. We denote an estimator of θ by θ̂ or, if the sample
size matters, by θ̂n. It’s important to keep in mind that an estimator is a function of data, which appear in
our model as random variables, so θ̂ is also a random variable in the model. For example, if we compute θ̂
with a function g of X1, . . . , Xn, then

θ̂ = g(X1, . . . , Xn) . (5.5)

The bias of an estimator is

bias(θ̂) = Eθ(θ̂)− θ . (5.6)

An estimator is unbiased if its bias equals zero. Unbiasedness is not considered as important as it once was
(there are good statistical reasons for this), but consistency is still a reasonable requirement. An estimator

θ̂n is consistent if

θ̂n
p−→ θ . (5.7)

The distribution of θ̂n is called the sampling distribution. The standard error of θ̂n is

se(θ̂n) =

√
Vθ(θ̂n) , (5.8)

which typically needs to be estimated, which we denote by ŝe.

Exercise 5.1. Let X1, . . . , Xn ∼iid Pois(λ). Show that X̄n is an unbiased estimator of λ. What is the
standard error? How can it be estimated?

The quality of a point estimate is often assessed by a loss function L : Θ × Θ → R. One of the most
common loss functions is mean squared error, or MSE,

mse(θ̂n) = Eθ[(θ̂n − θ)2] . (5.9)

It is a useful fact that

mse(θ̂n) = bias2(θ̂n) + Vθ(θ̂n) . (5.10)

Because of this, it’s easy to prove the following.

Theorem 5.3. If the MSE of an estimator θ̂n converges to zero as n → ∞, then θ̂n is consistent.
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Exercise 5.2. Let X1, . . . , Xn ∼iid Pois(λ). Show that X̄n + 1
n is a biased but consistent estimator of

λ.

An estimator is asymptotically normal if

θ̂n − θ

se(θ̂n)
⇝ N (0, 1) . (5.11)

Many of the estimators we encounter will be asymptotically normal, which is useful for a number of reasons.

7. Confidence sets

Let Cn = (a, b), where a and b are functions of data, be a random interval of R. A 1 − α confidence
interval is a random interval Cn such that

Pθ(θ ∈ Cn) = Pθ(a(X1, . . . , Xn) ≤ θ ≤ b(X1, . . . , Xn)) ≥ 1− α , (5.12)

for all θ ∈ Θ. Note that in the probability statement above, θ is fixed, and the interval is random. So this is
really a probability statement about our procedure for estimating Cn: if we were to repeat the experiment
(or different experiments with different parameters) and construct a 1− α confidence interval for each one,
then at least (1− α)× 100% of the confidence intervals would contain the “true”2 parameter. This is not a
probability statement about θ, which is not random.

If θ ∈ Rk then Cn will be a random subset (e.g., a hyperrectangle or hypersphere) of Rk.

We saw an example of a confidence interval for estimating the parameter of the Bernoulli distribution by in-
verting a probability bound from Hoeffding’s inequality. A more common scenario is that θ̂n is asymptotically
normal, in which case an approximate 1− α confidence interval is

Cn = (θ̂n − zα/2ŝe, θ̂n + zα/2ŝe) , (5.13)

where zα/2 = Φ−1(1 − α/2) = P(Z > α/2) is the α/2-quantile of the standard normal distribution, Z ∼
N (0, 1). Then (assuming that ŝe is a consistent estimator of se) as n → ∞,

Pθ(θ ∈ Cn) → 1− α . (5.14)

Exercise 5.3. Let X1, . . . , Xn ∼iid Pois(λ). Argue that (X̄n − λ)/se(X̄n) is asymptotically normal, and
construct an approximate 95% confidence interval for λ.

Exercise 5.4. For λ = 5 and each of n ∈ {10, 100, 1000}, simulate m = 1000 repetitions of the experi-
ment and approximate confidence interval from the previous activity. How accurate is the approximate
confidence interval for each n?

Exercise 5.5. Let X1, . . . , Xn ∼iid Unif(0, θ) and let θ̂n = 2X̄n. Find the bias, standard error, and
MSE of this estimator. Is it consistent?

8. What’s next?

Many courses on statistical inference would at this point focus on classical methods of parametric inference,
and the well established theory that comes with them. We’ll follow Wasserman and first study some very
generally applicable nonparametric methods (estimating CDFs, and bootstrap procedures for estimating
uncertainty) that have less (and less accessible) theory but that require fewer assumptions.

2I use quotes here because it’s rare that such a thing as a true parameter exists because our models tend to be over-
simplifications of whatever it is that we’re modeling.
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