
STAT 460/560 Class 4: Convergence of random variables part 2

Ben Bloem-Reddy

Reading: Chapter 2.2-2.3, [van98]. Supplement: Chapter 5, [Was04].

We’ll continue with our study of convergence of random variables.

1. Continuous mapping theorem(s)

Some modes of convergence are preserved by continuous functions.

Theorem 4.1 (Continuous mapping theorem). Let Xn, X be random vectors in Rk and let g : Rk → Rm be
continuous at every point of a set C such that P{X ∈ C} = 1. Then

(i) If Xn ⇝ X then g(Xn)⇝ g(X).

(ii) If Xn
p−→ X then g(Xn)

p−→ g(X).

(iii) If Xn
a.s.−→ X then g(Xn)

a.s.−→ g(X).

Activity 4.1. Suppose that Xn ⇝ N (0, 1) and Yn
p−→ σ. Show that XnYn ⇝ N (0, σ2).

Solution: By Theorem 3.1(v), we have that Zn = (Xn, Yn) ⇝ (X,σ) = Z, where X ∼ N (0, 1).
By Theorem 4.1(i), since the function g(z) = g(x, y) = xy is continuous on all of R2, we have that
XnYn ⇝ XσN (0, σ2).

This is a special case of Slutsky’s lemma.

Lemma 4.2 (Slutsky). Let Xn, X, Yn be random vectors, and c a constant. If Xn ⇝ X and Yn
p−→ c, then

(i) Xn + Yn ⇝ X + c.

(ii) YnXn ⇝ cX.

(iii) Xn/Yn ⇝ X/c, provided c ̸= 0.

As van der Vaart [van98] notes on p. 11, these are particular instantiations of the following: since Xn ⇝ X
and Yn

p−→ c implies (Xn, Yn) ⇝ (X, c), Theorem 4.1 tells us that g(Xn, Yn) ⇝ g(X, c) for any function g
that is continuous on the subset of Rk × {c} in which (X, c) takes its values.

We can apply similar reasoning to show the following.

Theorem 4.3. If Xn
p−→ X and Yn

p−→ Y , then g(Xn, Yn)
p−→ g(X,Y ) for g continuous on a set C such

that P{(X,Y ) ∈ C} = 1.

Activity 4.2 (Asymptotically valid approximate confidence interval). Suppose that we have
sequences of estimators Tn and Sn such that

√
n(Tn − θ)⇝ N (0, σ2) and S2

n
p−→ σ2 ,
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for some parameters θ and σ2 > 0. Form the confidence interval

[Tn − zα/2Sn/
√
n, Tn + zα/2Sn/

√
n] ,

where zα/2 is the value of the quantile function of the standard normal distribution evaluated at α/2.
Show that

lim
n

P{Tn − zα/2Sn/
√
n ≤ θ ≤ Tn + zα/2Sn/

√
n} = 1− α .

Solution: By (iii) of Slutsky’s lemma,
√
n(Tn − θ)/Sn ⇝ N (0, 1). Hence,

lim
n

P{−zα/2 ≤
√
n(Tn − θ)/Sn ≤ zα/2} = 1− α .

Rearranging the terms in the probability argument gives us the confidence interval.

2. Stochastic o and O symbols

Much of our work will require analyzing the behavior of sequences of random variables, and it’s convenient
to have some compact notation for sequences that converge in certain ways.

A sequence of random vectors Xn is bounded in probability if there is some finite number M such that,
for each ϵ > 0,

sup
n

P (∥Xn∥ > M) < ϵ .

(Note that the same M can be used for each n. Another name for this is uniform tightness.) In this case,
we write Xn = OP (1) and say that Xn is “big oh-P-one”. More generally, for a sequence Rn, we write
Xn = OP (Rn) if Xn = YnRn and Yn

p−→ 0, which indicates that Xn is bounded at “rate” Rn. For example,
when Rn ̸= 0, Xn = OP (Rn) implies that Xn/Rn

p−→ 0.

If, instead, Xn
p−→ 0, we write oP (1) and say that Xn is “little oh-P-one”. More generally, we write

Xn = oP (Rn) if Xn = YnRn and Yn
p−→ 0. Again, we interpret Rn as the rate at which Xn converges in

probability to zero.

van der Vaart [van98] lists some simple rules of calculus that the oP and OP symbols obey. For example,

oP (1) + oP (1) = oP (1) ,

which should be interpreted as: if Xn
p−→ 0 and Yn

p−→ 0, then Xn + Yn
p−→ 0. This is just a special case

of Theorem 4.3. The others have similar interpretations.

3. Characteristic functions

A generalization of the moment generating is the characteristic function, defined for a random vector
X ∈ Rk as the complex function (complex in the sense of complex numbers, with i =

√
−1),

ϕX(t) := E[eit
⊤X ] , t ∈ Rk . (4.1)

Learning complex integration is way beyond the scope of this class. If you’ve never encountered a complex
integral before, don’t worry. For the situations we’ll encounter in this course, you can mostly ignore the i,
and treat it like just a distinguished element of R that gets its own notation, like π.

Observe that ϕX(0) = 1. Here are some other facts about the characteristic function, which we won’t prove
here.

• Characteristic functions are in unique correspondence with probability measures on Rk, so X and Y

are equal in distribution if and only if E[eit
⊤X ] = E[eit

⊤Y ] for all t ∈ Rk. (Lemma 2.15 in [van98]).
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• Xn ⇝ X if and only if E[eit
⊤Xn ] → E[eit

⊤X ] for all t ∈ Rk. Moreover, if E[eit
⊤Xn ] converges pointwise

to a function ϕ(t) that is continuous at 0, then ϕ is the characteristic function of a random vector X
and Xn ⇝ X. (This is Lévy’s continuity theorem, 2.13 in [van98].)

• The characteristic function is determined by the set of all linear combinations t⊤X, t ∈ Rk. So both of
the previous properties can be written in terms of t⊤X for all t ∈ Rk. This is called the Cramér–Wold
device.

The first two properties of the characteristic function are used frequently, both to identify the distribution of
sums of i.i.d. random vectors, and to characterize the limiting distribution of a sequence of random vectors.

Example 4.1. Let X ∼ Nk(µ,Σ). (The subscript k indicates that X ∈ Rk.) Then

E[ez
⊤X ] =

∫
1

(2π)k/2(detΣ)1/2
exp

(
− 1

2
(x− µ)⊤Σ−1(x− µ)

)
ez

⊤xdx

=
1

(2π)k/2(detΣ)1/2

∫
e−

1
2x

⊤Σ−1x− 1
2µ

⊤µ+x⊤(z+Σ−1µ)dx

=
ez

⊤µ+ 1
2 z

⊤Σ−1z

(2π)k/2(detΣ)1/2

∫
e−

1
2 (x−(µ+Σz))⊤Σ−1(x−(µ+Σz))dx

= ez
⊤µ+ 1

2 z
⊤Σ−1z .

For z ∈ Rk, this follows from completing the square. For z = it, we need some complex analysis. You
can take my word that it works out. Therefore, for X ∼ Nk(µ,Σ),

ϕX(t) = eit
⊤µ− 1

2 t
⊤Σt . (4.2)

4. Central Limit Theorem

The multivariate Central Limit Theorem (CLT) in its most basic form states that if X1, X2, . . . are iid
random vectors in Rk with mean E(X) and covariance matrix Σ, then

√
n(X̄ − E(X))⇝ N (0,Σ) . (4.3)

This is widely used in its univariate form to obtain, for example, approximate confidence intervals for
parameters estimated by the sample mean.

For brevity, we won’t prove it here, but see Ch. 2.3 in [van98]. The basic idea is that for k = 1, we can make
a Taylor expansion of ϕX̄n

(t) around t = 0 to find that X̄n
p−→ E(X). That’s the weak LLN, which we

already proved with Chebyshev’s inequality. The next step is to again make a Taylor expansion, this time
of ϕ√

n(X̄n−µ)(t) around t = 0. Because the expectation of
√
n(X̄n − µ) is 0, the expansion is

E[eit
√
n(X̄n−µ)] =

(
1− 1

2

t2

n
E((X − µ)2) + o

(
1

n

))n

→ e−
1
2 t

2E((X−µ)2) = ϕZ(t) ,

where Z ∼ N (0,Var(X)).

For the multivariate version, the Crámer–Wold device can be used to extend the result to Rk.
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