
STAT 460/560 Class 3: Convergence of random variables

Ben Bloem-Reddy

Reading: Chapter 2.1-2.2, [Vaa98]. Supplement: Chapter 5, [Was04].

1. Modes of convergence

One of the main applications of probability to statistical problems is to analyze the asymptotic (as n → ∞)
behavior of a sequence of random variables X1, X2, . . . . Unlike a sequence of numbers, which essentially
has only one type of convergence, a sequence of random variables may converge in different ways. This
may seem counter-intuitive, but remember: a random variable is a function, and sequences of functions can
converge in different ways (e.g., uniformly, pointwise, in norm, etc.) The different notions of convergence of
random variables are basically expressing different types of functional convergence, which gets a little more
complicated when a probability measure is thrown in.

In this course, we will work primarily with three types of convergence. Let X1, X2, . . . be a sequence of
random vectors in Rk, and X another random vector in Rk.

1. Convergence in distribution. The sequence X1, X2, . . . converges in distribution to X, written
Xn ⇝ X, if

lim
n→∞

P (Xn ≤ t) = P (X ≤ t) (3.1)

for all t ∈ Rk for which the function t 7→ P (X ≤ t) is continuous. Note that when k = 1, this is just
the usual CDF.

2. Convergence in probability. The sequence X1, X2, . . . converges in probability to X, written
Xn

p−→ X, if for every ϵ > 0,

lim
n→∞

P (|Xn −X| > ϵ) = 0 . (3.2)

3. Convergence in quadratic mean. The sequence X1, X2, . . . converges in quadratic mean to X,
written Xn

qm−→ X, if

lim
n→∞

E[(Xn −X)2] = 0 . (3.3)

This is also known as convergence in L2.

Note that the strongest mode of convergence is almost sure convergence, Xn
a.s.−→ X, when for every

ϵ > 0,

P ( lim
n→∞

|Xn −X| > ϵ) = 0 . (3.4)

Here are some examples to illustrate the differences of the modes of convergence.

Example 3.1 (Convergence in probability but not almost surely). Let Ω = (0, 1], and P the
Lebesgue measure, so that P ((a, b)) = |b − a|. Let X1, X2, X3, X4, X5, X6, X7, . . . be the indicators of
(0, 1], (0, 1/2], (1/2, 1], (0, 1/3], (1/3, 2/3], (2/3, 1], (0, 1/4], . . . , respectively. Then for arbitrary ϵ ∈ (0, 1),
the probabilities P{Xn > ϵ} are the sequence 1, 1/2, 1/2, 1/3, 1/3, 1/3, 1/4, . . . , whose limit is 0. Thus,
Xn

p−→ 0. But, for every ω ∈ Ω, the sequence (Xn(ω))n≥1 consists of zeros and ones without end (i.e.,
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switching back and forth infinitely often). Therefore, lim infn Xn(ω) = 0 and lim supn Xn(ω) = 1, and
the set of ω for which (Xn(ω)))n≥1 converges is empty.

Example 3.2 (Convergence in probability and not quadratic mean). Using the same setup as
Example 3.1, we have that Xn

qm−→ 0, as well, because E[X2
n] → 0.

A slight alteration changes that. Let (X̂n)n≥1 = (X1,
√
2X2,

√
2X3,

√
3X4,

√
3X5,

√
3X6,

√
4X7, . . . ).

Now for ϵ ∈ (0, 1), P{X̂n > ϵ} = P{Xn > ϵ} for each n, so X̂n
p−→ 0. However, E[X̂2

n] = 1 for all n, so
(X̂n)n≥1 does not converge to 0 in quadratic mean. But it cannot converge elsewhere, say some a ̸= 0,

otherwise Theorem 3.1(ii) would imply that Xn
p−→ a. So (X̂n) does not converge in quadratic mean.

In most cases, either almost sure convergence is too strong (it won’t be achieved); or convergence in proba-
bility is good enough even when almost sure convergence is achieved. So we won’t see it much in this course.
The next theorem formalizes what implications are possible.

Theorem 3.1. Let Xn, X and Y be random vectors, and c a constant. Then

(i) Xn
a.s.−→ X implies that Xn

p−→ X.

(ii) Xn
qm−→ X implies that Xn

p−→ X.

(iii) Xn
p−→ X implies that Xn ⇝ X.

(iv) Xn
p−→ c if and only if Xn ⇝ c.

(v) If Xn ⇝ X and Yn
p−→ c then (Xn, Yn)⇝ (X, c).

(vi) If Xn
p−→ X and Yn

p−→ Y then (Xn, Yn)
p−→ (X,Y ).

Note that (iv) is a partial converse of (iii). The other converses are in general false without additional
conditions. Note also that it in general, if Xn ⇝ X and Yn ⇝ Y , (Xn, Yn) ̸⇝ (X,Y ); (v) is the strongest
such statement that can be made.

Example 3.3. As an example, suppose that X1, . . . , Xn are iid random variables with finite mean
E(X) and variance σ2. Then

E(X̄2
n) =

1

n2
E

( n∑
i=1

Xi

) n∑
j=1

Xj

 =
1

n2
nE

(
X1

n∑
i=1

Xi

)
=

1

n2
(n(σ2 + nE(X)2)) =

σ2

n
+ E(X)2 .

(3.5)

Because E[(X̄n − E(X))2] = E(X̄2
n)− E(X)2, we see that X̄n

qm−→ E(X).

Activity 3.1. Let X1, . . . , Xn be iid random variables with finite mean and variance. Show that
X̄n

p−→ E(X).

Solution: By Chebyshev’s inequality,

P(|X̄n − E(X̄n)| > ϵ) < P(|X̄n − E(X̄n)| ≥ ϵ)

= P(|X̄n − E(X)| ≥ ϵ)

≤ Var(X̄n)

ϵ2
=

σ2

nϵ2
,
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then taking the limit as n → ∞ on both sides,

lim
n→∞

P(|X̄n − E(X̄n)| > ϵ) ≤ lim
n→∞

σ2

nϵ2

= 0

Thus, X̄n
p−→ E(X).

We proved a version of the Weak Law of Large Numbers (WLLN).

Theorem 3.2. Let X1, . . . , Xn be iid random variables with finite mean E(X) and variance. Then X̄n
p−→

E(X).

The interpretation of the WLLN is that the distribution of X̄n concentrates around E(X) as n → ∞.

Exercise 3.1. Exercise 5.2, [Was04].

Solution: Suppose limn→∞ E (Xn − b)
2
= 0. Then for all n,

E (Xn − b)
2
= E

(
X2

n − 2bXn + b2
)

= E(X2
n)− E(2bXn) + E(b2) by linearity of expectation

= E(X2
n)− 2bE(Xn) + b2 by expectation of constants

= E(X2
n)− 2bE(Xn) + b2 − (E(Xn))

2
+ (E(Xn))

2

= E(X2
n) +

(
(E(Xn))

2 − 2bE(Xn) + b2
)
− (E(Xn))

2

= E(X2
n) + (E(Xn)− b)

2 − (E(Xn))
2

= Var(Xn) + (E(Xn)− b)
2

= Var(Xn) + bias2b(Xn) .

Since both of these terms are non-negative and by assumption, their sum in the limit n → ∞ is equal
to zero, they must both converge to zero as n → ∞. Therefore,

lim
n→∞

E(Xn) = b , lim
n→∞

Var(Xn) = 0 . (3.6)

Conversely, if both of those convergence statements hold then by the identity

E (Xn − b)
2
= Var(Xn) + (E(Xn)− b)

2
, (3.7)

clearly E (Xn − b)
2 → 0, which implies Xn

qm−→ b.

Some modes of convergence are preserved by continuous functions.

Theorem 3.3 (Continuous mapping theorem). Let Xn, X be random vectors in Rk and let g : Rk → Rm be
continuous at every point of a set C such that P{X ∈ C} = 1. Then

(i) If Xn ⇝ X then g(Xn)⇝ g(X).

(ii) If Xn
p−→ X then g(Xn)

p−→ g(X).

(iii) If Xn
a.s.−→ X then g(Xn)

a.s.−→ g(X).

Activity 3.2. Suppose that Xn ⇝ N (0, 1) and Yn
p−→ σ. Show that XnYn ⇝ N (0, σ2).

This is a special case of Slutsky’s lemma.

Lemma 3.4 (Slutsky). Let Xn, X, Yn be random vectors, and c a constant. If Xn ⇝ X and Yn
p−→ c, then
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(i) Xn + Yn ⇝ X + c.

(ii) YnXn ⇝ cX.

(iii) Xn/Yn ⇝ X/c, provided c ̸= 0.

As Vaart [Vaa98] notes on p. 11, these are particular instantiations of the following: since Xn ⇝ X and
Yn

p−→ c implies (Xn, Yn) ⇝ (X, c), Theorem 3.3 tells us that g(Xn, Yn) ⇝ g(X, c) for any function g that
is continuous on the subset of Rk × {c} in which (X, c) takes its values.

We can apply similar reasoning to show the following.

Theorem 3.5. If Xn
p−→ X and Yn

p−→ Y , then g(Xn, Yn)
p−→ g(X,Y ) for g continuous on a set C such

that P{(X,Y ) ∈ C} = 1.

Activity 3.3 (Asymptotically valid approximate confidence interval). Suppose that we have
sequences of estimators Tn and Sn such that

√
n(Tn − θ)⇝ N (0, σ2) and S2

n
p−→ σ2 ,

for some parameters θ and σ2 > 0. Form the confidence interval

[Tn − zα/2Sn/
√
n, Tn + zα/2Sn/

√
n] ,

where zα/2 is the value of the quantile function of the standard normal distribution evaluated at α/2.
Show that

lim
n

P{Tn − zα/2Sn/
√
n ≤ θ ≤ Tn + zα/2Sn/

√
n} = 1− α .

Solution: By (iii) of Slutsky’s lemma,
√
n(Tn − θ)/Sn ⇝ N (0, 1). Hence,

lim
n

P{−zα/2 ≤
√
n(Tn − θ)/Sn ≤ zα/2} = 1− α .

Rearranging the terms in the probability argument gives us the confidence interval.

2. Stochastic o and O symbols

Much of our work will require analyzing the behavior of sequences of random variables, and it’s convenient
to have some compact notation for sequences that converge in certain ways.

A sequence of random vectors Xn is bounded in probability if there is some finite number M such that,
for each ϵ > 0,

sup
n

P (∥Xn∥ > M) < ϵ .

(Note that the same M can be used for each n. Another name for this is uniform tightness.) In this case,
we write Xn = OP (1) and say that Xn is “big oh-P-one”. More generally, for a sequence Rn, we write
Xn = OP (Rn) if Xn = YnRn and Yn

p−→ 0, which indicates that Xn is bounded at “rate” Rn. For example,
when Rn ̸= 0, Xn = OP (Rn) implies that Xn/Rn

p−→ 0.

If, instead, Xn
p−→ 0, we write oP (1) and say that Xn is “little oh-P-one”. More generally, we write

Xn = oP (Rn) if Xn = YnRn and Yn
p−→ 0. Again, we interpret Rn as the rate at which Xn converges in

probability to zero.

Vaart [Vaa98] lists some simple rules of calculus that the oP and OP symbols obey. For example,

oP (1) + oP (1) = oP (1) ,

which should be interpreted as: if Xn
p−→ 0 and Yn

p−→ 0, then Xn + Yn
p−→ 0. This is just a special case

of Theorem 3.5. The others have similar interpretations.
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