
STAT 460/560 Class 1: Intro, overview, review of basic

probability and random variables

Ben Bloem-Reddy

Reading: Chapters 1-2, [Was04]

1. Intro, logistics

2. Brief survey

3. Course overview and syllabus

4. Super speedy review of probability

Probability is a pre-requisite for this course. If anything in the rest of this class sheet is unfamil-
iar/unknown to you, you will probably struggle in STAT 460/560. Everything that follows should
be review.

We will not get through everything on the sheet today. You should finish the activities and exercises
before the next class to make sure that you’re ready for this course.

5. Review of sample spaces and set notation

This really will be a review of basic probability. Recall that we use probability as a mathematical
model for uncertainty in experiments. An experiment itself is modeled as:

• A sample space, Ω, which contains all of the possible outcomes ω ∈ Ω of an experiment.

• Subsets of E ⊆ Ω, called events.

Common examples include an experiment consisting of two coin flips (Ω = {HH,HT, TH, TT}) or
the measurement of temperature (Ω = R+ = [0,∞)).

Exercise 1.1. Formalize a problem (experiment) of interest to you in terms of a sample space
and outcomes, and describe two non-trivial events.

Solution: Two examples given by students in previous years’ classes:

• Modeling a game of roulette (https://en.wikipedia.org/wiki/Roulette). The sam-
ple space is Ω = {0, 00, 1, 2, . . . , 36}. An outcome is any of the elements (numbers) in Ω.
Each number also has a color, so some events are: that the color is red; the number is
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even; the number is between 1 and 12.

• Modeling agents/players in a game. Each agent is modeled has having a “type,” which
is a value in [0, 1]. For simplicity, we will only consider modeling the agents, so Ω =
[0, 1], an outcome is any value in the unit interval (representing a particular type), and
possible events are [0, 1/2) (i.e., that an agent’s type is somewhere in that interval) or
[1/4, 1/2) ∪ (3/4, 1].

A set is just a collection of elements. Given a set (or event) A, its complement is Ac = {ω ∈ Ω :
ω /∈ A} = Ω \ A. The complement of Ω is the empty set, ∅ = {}. The union of two events, A and
B, is A ∪ B = {ω ∈ Ω : ω ∈ A or ω ∈ B or both}. The intersection is A ∩ B = {ω ∈ Ω : ω ∈
A and ω ∈ B}. The notation A ⊂ B indicates that the set A is contained in B. If A is finite, |A|
is the number of elements in it.

A sequence of sets, A1, A2, . . . , is disjoint if Ai ∩ Aj = ∅ for each i ̸= j. A disjoint sequence forms
a partition if also ∪i≥1Ai = Ω.

6. Axioms of probability

We won’t worry about σ-algebras and measure theory in the class, though if you have encountered
that material before then it’s good to keep it in mind. I’ll try to point out any potential technical
difficulties we’re glossing over in the course.

Using probability as a model of randomness stipulates that once we have our sample space Ω and
collection of events A ⊂ Ω, we also have a probability measure (or probability distribution), P, that
assigns a real number to each event A, denoted P(A). The axioms of probability, due to Kolmogorov,
are conditions on P:

Axiom 1 P(A) ≥ 0 for every event A.

Axiom 2 P(Ω) = 1.

Axiom 3 Countable additivity: If A1, A2, . . . are disjoint, then

P (∪∞
i=1Ai) =

∞∑
i=1

P(Ai) . (1.1)

Activity 1.1. Prove the following properties of P.

1. Norming : P(∅) = 0

2. Finite additivity : A ∩B = ∅ ⇒ P(A ∪B) = P(A) + P(B)

3. P(Ac) = 1− P(A)

4. Monotonicity : A ⊂ B ⇒ P(A) ≤ P(B)

5. Inclusion/exclusion: P(A ∪B) = P(A) + P(B)− P(A ∩B)

Solution: We can prove most of these using the following fact: since A∩∅ = ∅ and A∪∅ = A
for any set A (including A = Ω and A = ∅), any finite disjoint sequence A1, A2, . . . , An can be

2



extended to an infinite disjoint sequence as A1, A2, . . . , An, ∅, ∅, . . . .

To prove the norming property, consider the disjoint sequence A1 = Ω, A2 = ∅, A3 = ∅, . . . . By
Axioms 2 and 3,

P (Ω ∪ ∅ ∪ · · · ) = P(Ω) =
∞∑
i=1

P(Ai) = P(Ω) +
∞∑
i=2

P(∅) .

This implies that P(∅) = 0.

With that in hand, the rest follow. Let A and B be disjoint. Then the sequence A,B, ∅, ∅, . . .
is disjoint and by Axiom 3 and the norming property,

P (A ∪B ∪ ∅ ∪ · · · ) = P(A ∪B) = P(A) + P(B) + P(∅) = P(A) + P(B) .

Property 3 is an easy consequence of the fact that A ∩Ac = ∅ and A ∪Ac = Ω.

Property 4 (monotonicity) follows from the fact that if A ⊂ B then

P(B) = P(A ∪ (B \A)) = P(A) + P(B \A) .

By Axiom 1, the last term must be ≥ 0 so the desired inequality follows.

Finally, we can write A∪B as the union of disjoint sets: A∪B = (A∩Bc)∪ (A∩B)∪ (B∩Ac).
So,

P(A ∪B) = (P(A ∩Bc) + P(A ∩B)) + (P(B ∩Ac) + P(A ∩B))− P(A ∩B)

= P ((A ∩Bc) ∪ (A ∩B)) + + (P(B ∩Ac) ∪ (B ∩A))− P(A ∩B)

= P(A) + P(B)− P(A ∩B) .

A sequence of sets is monotone increasing if A1 ⊂ A2 ⊂ · · · . Its limit is defined as limn→∞ An =
∪i≥1Ai. A sequence is monotone decreasing if A1 ⊃ A2 ⊃ · · · . Its limit is limn→∞ An = ∩i≥1Ai.
Probability measures are continuous with respect to these kinds of limits.

Theorem 1.1. If A1, A2, . . . is either monotone increasing or monotone decreasing then

lim
n→∞

P(An) = P(A) . (1.2)

Exercise 1.2. Prove Theorem 1.1. (This is Theorem 1.8 in [Was04], where much of the proof
is given. This activity therefore involves filling in the missing details of the monotone increasing
direction, and also proving the monotone decreasing direction.)

Solution: First, suppose that A1, A2, . . . is monotone increasing, so that A = ∪n≥1An =
limn→∞ An. Let B1 = A1, B2 = A2 \ A1, and so on, so that Bk = Ak \ (∪k−1

n=1An). This
sequence is disjoint: for i < j,

Bi ∩Bj = (Ai \ (∪i−1
n=1An) ∩ (Aj \ (∪j−1

n=1An) = ∅ .
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(Because the sequence is monotone increasing, Ai ⊂ ∪j−1
n=1An, the latter of which is removed

from Aj before intersecting with Ai.)

Moreover, ∪n
i=1Bi = ∪n

i=1Ai = An. The second equality is obvious; for the first equality, note
that ∪n

i=1Bi = ∪n
i=1Ai \ (∪i−1

j=1Aj) = ∪n
i=1Ai.

Using Axiom 3 and finite additivity,

lim
n→∞

P(An) = lim
n→∞

n∑
i=1

P(Bi) =

∞∑
i=1

P(Bi) = P (∪∞
i=1Bi) = P(A) .

Now suppose instead thatA1, A2, . . . is monotone decreasing, so thatA = ∩n≥1An = limn→∞ An.
Note that Ac

1, A
c
2, . . . is a monotone increasing sequence with limit Ac, and that An = ∩n

i=1Ai =
(∪n

i=1A
c
i )

c. So we have

lim
n→∞

P(An) = lim
n→∞

P(∩n
i=1An) = lim

n→∞
P((∪n

i=1A
c
i )

c)

= 1− lim
n→∞

P(∪n
i=1A

c
i ) = 1− P(Ac) = P(A) .

7. Probability on discrete spaces

Recall that when Ω is finite (i.e., consists of a finite collection of elements) then the uniform
distribution on Ω is defined by

P(A) =
|A|
|Ω|

, A ⊂ Ω . (1.3)

Exercise 1.3. Do Exercise 1.6 in [Was04].

Solution: Here, Ω = {0, 1, 2, . . . }. Suppose that P is the uniform distribution on Ω, so that
for any A,B ⊂ Ω, P(A) = P(B) whenever |A| = |B|. Let An = {n}, for n = 0, 1, 2, . . . . Clearly,
this is a disjoint sequence with ∪∞

n=0An = Ω. By the assumption of the uniform distribution,
P(An) = p ∈ [0, 1] for every n. By Axiom 3,

P(Ω) = lim
n→∞

P(∪n
i=0Ai) = lim

n→∞

n∑
i=0

p = lim
n→∞

(n+ 1)p .

This only has two possibly limits: zero, if p = 0, or +∞, if p > 0. In either case, Axiom 2
would be violated. So no uniform probability measure on Ω (or any countably infinite set)
exists.

8. Independent events

A set of events {Ai : i ∈ I} is independent if

P (∩i∈IAi) =
∏
i∈I

P(Ai) . (1.4)
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Exercise 1.4. Exercises 1.11 and 1.14 in [Was04].

Solution: Exercise 1.11: If A and B are independent then

P(Ac ∩Bc) = P(Ac) + P(Bc)− P(Ac ∪Bc)

= P(Ac) + P(Bc)− P((A ∩B)c)

= P(Ac) + P(Bc)− 1 + P(A ∩B)

= P(Ac) + P(Bc)− 1 + P(A)P(B)

= 1− (1− P(Ac))− (1− P(Bc)) + P(A)P(B)

= 1− P(A)− P(B) + P(A)P(B)

= (1− P(A))(1− P(B))

= P(Ac)P(Bc) .

The first equality follows from the inclusion/exclusion formula from Activity 1.1. The remain-
der of the inequalities are algebraic manipulations.

Exercise 1.14: Assume that P(A) = 0. Then for any event B ⊂ Ω, note that A∩B ⊆ A. By the
monotonicity and non-negativity of probability measures, it must be that P(A ∩B) ≤ P(A) =
0 = P(A)P(B). So A is independent of all other events. If, instead, P(A) = 1 then P(Ac) = 0
so Ac is independent from all other events. From the previous part of the activity, that implies
that A = (Ac)c is independent from all other events.

If A is independent of itself then P(A) = P(A∩A) = P(A)P(A), so we have P(A) = P(A)2, and
it must be the case that P(A) is either 0 or 1.

Note that the idea of an event being independent of itself seems strange and non-intuitive, and
usually only occurs in some special cases where limits are involved. They give rise to so-called
“0-1” laws (e.g., Kolmogorov’s 0-1 law, Hewitt–Savage 0-1 law).

9. Random variables

We start with a sample space Ω, events, etc., as in last class. In general, a random variable is a
mapping, or function, from Ω into some set in which the random variable takes values. In this class,
we will deal almost exclusively with real-valued random variables, in which case our definition is as
follows: a random variable is a mapping

X : Ω → R , (1.5)

that assigns a real number X(ω) to each ω ∈ Ω.1 I find it helpful to keep in mind that a random
variable is just a function that becomes random when we feed randomness into it.

As Wasserman notes, at some point it is common to stop mentioning the sample space Ω and work
directly on the space(s) where our random variables take their values, but “the sample space is
really there, lurking in the background.” Things like dependence/independence don’t work without
an underlying sample space tying everything together, so it is necessary.

1Technically, a random variable must be measurable with respect to a σ-algebra on Ω and one on its range space.
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Given a random variable X and a subset A ⊂ R, the inverse image is

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} . (1.6)

The probability distribution corresponding to X is

P(X ∈ A) = P(X−1(A)) . (1.7)

Recall that the indicator function of a set A ⊂ Ω is

IA(ω) =

{
1, ω ∈ A

0, ω /∈ A
. (1.8)

Observe that according to the definition of random variable, an indicator function on a subset of Ω
is a random variable.

Example 1.1 (From [Was04], Example 2.4). Flip the same coin twice independently and
let X be the number of heads. Explicitly, if Y1, Y2 are the outcomes of the coin flips, then

X(ω) = I{H}(Y1(ω)) + I{H}(Y2(ω)) . (1.9)

X and its distribution are summarized as follows.

ω P({ω}) X(ω)

TT 1/4 0
TH 1/4 1
HT 1/4 1
HH 1/4 2

7→

x P(X = x)

0 1/4
1 1/2
2 1/4

Exercise 1.5. Continuing from Exercise 1.1, specify a random variable that occurs in your
problem of interest. Is the distribution of the random variable easily calculated, as in Exam-
ple 1.1?

Solution: Our problem of interest lies in placing two bets in single-zero wheel roulette. The
strategy involves making bets (Yi) based on the color of each slot: black, red, or green. The
initial bet is placed on black, followed by a second bet on green. Thus, Ω = {(Y1, Y2) : Yi ∈
{B,R,G}}. In this context, X represents the expected return from the game. Each bet incurs
a cost of 100 units. A correct prediction for red or black yields a return of 50 units, while a
correct prediction for green results in a return of 500 units. Therefore, in this scenario,

X(ω) = I{B}(Y1(ω)) · 50 + I{G}(Y2(ω)) · 500− 200
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X and its distribution are summarized as follows.

ω P({ω}) X(ω)

BB 324/1369 -150
BR 324/1369 -150
BG 18/1369 350
RB 324/1369 -200
RR 324/1369 -200
RG 18/1369 300
GB 18/1369 -200
GR 18/1369 -200
GG 1/1369 300

→

x P(X = x)

-200 684/1369
-150 648/1369
300 19/1369
350 18/1369

10. Distribution functions, densities, etc.

For a random variable X that takes values in R, there a few important functions that tell us
everything we need to know about its distribution.

• The cumulative distribution function, or CDF, is the function FX : R → [0, 1], defined by

FX(x) = P(X ≤ x) . (1.10)

Theorem 2.7 in [Was04] establishes that the CDF characterizes the distribution: If FX(x) =
FY (x) for all x ∈ R then X and Y have the same distribution. Equality in distribution is

denoted by X
d
= Y . Keep in mind that this is a statement about distributions, not about X

and Y .

Conversely, Theorem 2.8 in [Was04] says that if a function F : R → [0, 1] “looks like” a
distribution function (i.e., it is non-decreasing, right-continuous, and has the correct limits)
then it is the CDF of some probability measure.

Lemma 2.15 in [Was04] collects some useful identities for computing probabilities from the
CDF.

• The quantile function, or inverse CDF, is defined by

F−1(q) = inf{x : F (x) > q} . (1.11)

If F is continuous and strictly increasing then this is the functional inverse of F , i.e., F−1(q)
is the unique real number x such that F (x) = q. If F has jumps and/or regions on which it
is not increasing (i.e., it is flat) then some care must be taken. (Try computing the quantile
function of the CDF in Figure 2.1 of [Was04].)

• If X takes countably many values {x1, x2, . . . } then we say it is discrete, in which case the
probability mass function, or PMF, is defined as fX(x) = P(X = x). Thus, the CDF can be
obtained as

FX(x) =
∑
xi≤x

fX(xi) . (1.12)

The PMF uniquely characterizes the corresponding probability measure.
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• X is said to be continuous if there is a function fX such that fX(x) ≥ 0 for all x ∈ R,∫∞
−∞ fX(x)dx = 1, and

P(a < X < b) =

∫ b

a

fX(x)dx . (1.13)

The function fX is called the probability density function, or PDF. Clearly, then,

FX(x) =

∫ x

−∞
fX(t)dt , (1.14)

and fX(x) = dFX

dx (x) at all points x at which FX is differentiable.

The PDF uniquely characterizes the corresponding probability measure.2

Activity 1.2. Exercise 2.4(a) of [Was04].

Solution: Let FX(x) = P(X < x) =
∫ x

0
fX(x)dx be the CDF of X:

FX(x) =



0 x ≤ 0
x
4 0 < x ≤ 1
1
4 1 < x ≤ 3
3x−7

8 3 < x ≤ 5

1 x ≥ 5

Exercise 1.6. Also find the quantile function for the previous activity.

Solution: We can then find the quantile function F−1(q) = inf{x : F (x) > q} by finding the
inverse

F−1
x (q) =

{
4q 0 < q ≤ 1

4
8q+7

3
1
4 < q ≤ 1

Activity 1.3. Exercise 2.6 of [Was04].

Solution: The function fY (y) is defined as P(Y = y). In this case, Y can only assume the
values 0 and 1. Thus, f(y) can be determined by finding P(Y = 1) and P(Y = 0). Thus,

P(Y = 1) =

∫
X∈A

fX(x)dx

2Technically this is only true up to sets of (Lebesgue) measure zero, so there may be many “different” PDFs that
are probabilistically equivalent; all of the probabilistic calculations performed with them (CDF, expectation, etc.)
will agree.
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P(Y = 0) = 1−
∫
X∈A

fX(x)dx

Then,

fy(y) =

{∫
X∈A

fX(x)dx y = 1

1−
∫
X∈A

fX(x)dx y = 0

Consequently, the CDF of Y is:

FY (y) =


0 y < 0

1−
∫
X∈A

fX(x)dx 0 ≤ y < 1

1 y ≥ 1

Exercise 1.7. The Poisson distribution with parameter λ > 0 has PMF

fX(x) = e−λλ
x

x!
, x ∈ {0, 1, 2, . . . } . (1.15)

Write down the CDF, FX , and show that limx→∞ FX(x) = 1.

Solution: Since the Poisson distribution is discrete, we can derive the CDF from the PMF
of X:

FX(x) =

x∑
k=0

fX(k) =

x∑
k=0

e−λλ
k

k!

To find limx→∞ FX(x), we employ a Taylor expansion:

lim
x→∞

e−λ
x∑

k=0

λk

k!
= e−λ lim

x→∞

x∑
k=0

λk

k!
= e−λeλ = eλ−λ = e0 = 1.

Here, we have the cumulative distribution function FX(x) and the Taylor expansion for the
exponential function.

Exercise 1.8. The Gamma distribution with parameters α > 0, β > 0 has PDF

fX(x) =
1

βαΓ(α)
xα−1e−x/β , x ∈ (0,∞) . (1.16)

(Γ(α) =
∫∞
0

tα−1e−tdt is the so-called Gamma function, which gives the distribution its name.)

Identify the names of the distributions corresponding to the following special cases:

• α = 1, β > 0.
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• α = p/2, β = 2.

Solution: • α = 1, β > 0

The gamma PDF becomes
1

β1Γ(1)
x1−1e−

x
β =

1

β
e−

x
β (1.17)

This is the PDF of the exponential distribution, thus the exponential distribution is a special
case of the gamma distribution, where α = 1, β > 0

• α = p/2, β = 2

1

2p/2Γ(p/2)
xp/2−1e−

x
2 . (1.18)

This results in the PDF of the χ2 distribution with p degrees of freedom.

11. Multivariate and marginal distributions, independence

Let X1, . . . , Xn be random variables, and define X = (X1, . . . , Xn). X is called a random vector,
or multivariate random variable. If the Xi’s are discrete then the joint PMF is

fX(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn) . (1.19)

If the Xi’s are continuous then the joint PDF is the function fX : Rn → R+ satisfying:

• fX(x1, . . . , xn) ≥ 0 for all (x1, . . . , xn) ∈ Rn;

•
∫
Rn fX(x1, . . . , xn)dx1 · · · dxn = 1;

• for any set A ∈ Rn, P(X ∈ A) =
∫
A
fX(x1, . . . , xn)dx1 · · · dxn.

As in the univariate case, a joint PMF/PDF is in unique correspondence with a probability measure
on Rn (with the same measure-theoretic caveat about equivalence up to sets of measure zero).

For simplicity, we’ll focus here on n = 2, the bivariate case, and write (X,Y ) for the two random
variables. From a joint PMF/PDF, we can obtain the marginal PMF/PDF of X by summing/in-
tegrating the joint PMF/PDF with respect to Y (over its entire support).

The random variables X and Y are said to be independent if for every A,B ⊂ R,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) . (1.20)

If X and Y are independent, we write X⊥⊥Y .

Activity 1.4. [Was04], Exercise 2.10.

Solution: Two random variables are independent when P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈
B). In this case,
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P(g(X) ∈ A, h(Y ) ∈ B) = P(X ∈ g−1(A), Y ∈ h−1(B))

= P(X ∈ g−1(A))P(Y ∈ h−1(B))

= P(g(X) ∈ A)P(h(Y ) ∈ B)

Consequently, g(X)⊥⊥h(Y ).

Conveniently, independence can be checked with the PMF/PDF.

Theorem 1.2 ([Was04], Theorem 2.30). Let X and Y have joint PDF fX,Y . Then X⊥⊥Y if and
only if fX,Y (x, y) = fX(x)fY (y) for all (x, y) ∈ R2.

Exercise 1.9. Prove Theorem 1.2.

Solution: Assume fX,Y (x, y) = fX(x)fY (y). Then

P(X ∈ A, Y ∈ B) =

∫
A×B

fX,Y (x, y)dx dy =

(∫
A

fX(x)dx

)(∫
B

fY (y)dy

)
= P(X ∈ A)P(Y ∈ B) ,

for any sets A,B. This implies that X⊥⊥Y .

For the converse, assume that X⊥⊥B. Then

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) (1.21)∫
A×B

fX,Y (x, y)dx dy =

(∫
A

fX(x)dx

)(∫
B

fY (y)dy

)
(1.22)

=

∫
A×B

fX(x)fY (y)dx dy , (1.23)

where the second line follows from the definition of PDF. Since PDFs are (almost surely)
unique, this implies that

fX,Y (x, y) = fX(x)fY (y) for (almost) all (x, y) ∈ R2 . (1.24)

This generalizes to n > 2. If X1, . . . , Xn are independent and have the same marginal distribution
with CDF F then we say that they are independent and identically distributed, or iid.

12. Conditional distributions∗

Properly defining conditional distributions in general takes some sophisticated techniques from
measure theory, but if we have a PMF or PDF then things work out without too much difficulty.
Let fX,Y (x, y) be a joint PMF/PDF and fY (y) the corresponding marginal PMF/PDF of Y . Then
the conditional PMF/PDF of X given Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
, if fY (y) > 0 . (1.25)
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Exercise 1.10. Exercise 2.17, [Was04].

Solution: We find the marginal distribution function:

fY (y) =
∫
fX,Y (x, y)dx =

∫ 1

0
c(x+ y2) = c

∫ 1

0
x+ y2 = c[ 12x

2 + xy2]10 = c 12 + cy2 then

f(x|y)(x|y) =
c(x+ y2)

c 12 + cy2
=

x+ y2

1
2 + y2

⇒ f(x|y)(x|y =
1

2
) =

x+ ( 12 )
2

1
2 + 1

4

=
x+ ( 12 )

2

3
4

=
4x+ 1

3

We can then find

P(X <
1

2
|Y =

1

2
) =

∫ 1
2

0

4x+ 1

3
dx =

[
2x2 + x

3

] 1
2

0

=
2( 12 )

2 + 1
2

3
=

1

3

13. Transformations∗

Given a random variable X with PMF/PDF fX , how do we find the distribution of Y = r(X), for
some function r? Wasserman [Was04] breaks the general procedure down into three steps:

1. For each y, find the set Ay = {x : r(x) ≤ y}.

2. Find the CDF

FY (y) =

∫
Ay

fX(x)dx . (1.26)

3. The PDF is fY (y) = F ′
Y (y).

If r is strictly monotone then it has a well-defined inverse s = r−1, and the procedure simplifies
into the formula

fY (y) = fX(s(y))

∣∣∣∣ds(y)dy

∣∣∣∣ . (1.27)

Exercise 1.11. Let X and Y be independent random variables with PDFs fX and fY ,
respectively. Let g and h be strictly monotone functions from R to R. What is the joint
PDF of (g(X), h(Y ))?

Solution: Let l = g−1 and m = h−1. We can express the distribution of X and Y respectively
as

fX(x) = fY (l(x))

∣∣∣∣ l(x)dx

∣∣∣∣
and

fY (y) = fX(m(y))

∣∣∣∣m(y)

dy

∣∣∣∣
12



We can then find the joint distribution of g(x), h(y):

fX,Y (g(x), h(y)) = fX(g(x))fY (l(x)) = fY (l(x))

∣∣∣∣ l(x)dx

∣∣∣∣ · fX(m(y))

∣∣∣∣m(y)

dy

∣∣∣∣
Exercise 1.12. Exercise 2.21, [Was04].

Solution: As stated in the activity, the variables X are independent. In this context, when
the maximum of the X’s is less than y, the joint event’s probability is equivalent to the product
of the probabilities of the individual events. Then,

FY (y) = P(Yn ≤ y)

= P(max{X1, . . . , Xn} ≤ y)

=

n∏
i=1

P(Xi ≤ y)

= FX(y)n

= (1− e−y/β)n

Consequently, fY (y) can be obtained from FY (y),

fY (y) =
d

dy
(1− e−y/β)n

14. The multivariate normal distribution

Suppose that X is a random vector of length k. X has a multivariate normal distribution with mean
vector µ ∈ Rk and symmetric, positive definite covariance matrix Σ ∈ Rk×k, denoted X ∼ N (µ,Σ),
if it has PDF

fX(x;µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (1.28)

Here, |Σ| is the determinant of Σ.

There are two types of transformations we commonly encounter when dealing with normal distri-
butions. The first is quite general.

Theorem 1.3. Let X ∼ N (µ,Σ) in Rk. Let c ∈ Rm be a vector and B ∈ Rm×k be a matrix, so
that Y = c+BX is an affine transformation of X. Then Y ∼ N (c+Bµ,BΣBT ).

The proof of this is straightforward but requires using the characteristic function.

As a special case, we can consider transforming an arbitrary normal random variable into a standard
normal random variable, so that µ = 0 and Σ = I, the identity matrix. Since Σ is symmetric and

13



positive definite, it can be factored as

Σ = UΛUT = (UΛ1/2)(UΛ1/2)T = Σ1/2Σ1/2 (1.29)

where UΛUT is the eigendecomposition with Λ a diagonal matrix of eigenvalues. In practice,
the eigendecomposition is not used, but Σ1/2 is obtained by Cholesky decomposition for numerical
reasons.3 This so-called square-root of Σ has some nice properties: Σ1/2 is symmetric; Σ1/2Σ−1/2 =
Σ−1/2Σ1/2 = I; and (Σ−1)1/2 = (Σ1/2)−1.

Exercise 1.13. Show that if X ∼ N (µ,Σ) then Z = Σ−1/2(X − µ) ∼ N (0, I).

Solution: We can use the transformation of the joint PDF. In particular, X = Σ1/2Z + µ,
and dx = |Σ|1/2dz, so

fZ(z) =
|Σ|1/2

(2π)k/2|Σ|1/2
exp

(
−1

2
zT z

)
=

1

(2π)k/2
exp

(
−1

2
zT z

)
. (1.30)

See Chapter 16 of [JP04] for much more on the multivariate normal distribution.
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